Suppr超能文献

免疫磁珠分离是一种适用于 T 细胞电生理学和离子通道药理学研究的方法。

Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells.

机构信息

Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary.

R&D Reagents Chemical Biology, Miltenyi Biotec B.V. & Co. KG , Bergisch Gladbach, Germany.

出版信息

Channels (Austin). 2021 Dec;15(1):53-66. doi: 10.1080/19336950.2020.1859753.

Abstract

Ion channels play pivotal role in the physiological and pathological function of immune cells. As immune cells represent a functionally diverse population, subtype-specific functional studies, such as single-cell electrophysiology require proper subset identification and separation. Magnetic-activated cell sorting (MACS) techniques provide an alternative to fluorescence-activated cell sorting (FACS), however, the potential impact of MACS-related beads on the biophysical and pharmacological properties of the ion channels were not studied yet. We studied the aforementioned properties of the voltage-gated Kv1.3 K channel in activated CD4 T-cells as well as the membrane capacitance using whole-cell patch-clamp following immunomagnetic positive separation, using the REAlease® kit. This kit allows three experimental configurations: bead-bound configuration, bead-free configuration following the removal of magnetic beads, and the label-free configuration following removal of CD4 recognizing antibody fragments. As controls, we used FACS separation as well as immunomagnetic negative selection. The membrane capacitance and of the biophysical parameters of Kv1.3 gating, voltage-dependence of steady-state activation and inactivation kinetics of the current were not affected by the presence of MACS-related compounds on the cell surface. We found subtle differences in the activation kinetics of the Kv1.3 current that could not be explained by the presence of MACS-related compounds. Neither the equilibrium block of Kv1.3 by TEA or charybdotoxin (ChTx) nor the kinetics of ChTx block are affected by the presence of the magnetics beads on the cell surface. Based on our results MACS is a suitable method to separate cells for studying ion channels in non-excitable cells, such as T-lymphocytes.

摘要

离子通道在免疫细胞的生理和病理功能中起着关键作用。由于免疫细胞是一个功能多样化的群体,因此需要进行亚型特异性功能研究,如单细胞电生理学,这就需要正确的亚群鉴定和分离。磁激活细胞分选 (MACS) 技术为荧光激活细胞分选 (FACS) 提供了一种替代方法,然而,MACS 相关珠粒对离子通道的生物物理和药理学特性的潜在影响尚未得到研究。我们使用全细胞膜片钳技术,在免疫磁阳性分离后,研究了激活的 CD4 T 细胞中电压门控 Kv1.3 钾通道以及膜电容的上述特性,使用的是 REAlease®试剂盒。该试剂盒允许进行三种实验配置:珠粒结合配置、去除磁珠后的珠粒自由配置以及去除 CD4 识别抗体片段后的无标记配置。作为对照,我们使用 FACS 分离和免疫磁阴性选择。膜电容和 Kv1.3 门控的生物物理参数,如稳态激活的电压依赖性和电流失活动力学,不受细胞表面 MACS 相关化合物的存在影响。我们发现 Kv1.3 电流的激活动力学存在细微差异,但这些差异不能用 MACS 相关化合物的存在来解释。MACS 相关化合物的存在既不会影响 Kv1.3 电流的平衡阻断,也不会影响 TEA 或蝎毒素 (ChTx) 对 Kv1.3 的动力学阻断。基于我们的结果,MACS 是一种适合分离细胞的方法,可用于研究非兴奋性细胞(如 T 淋巴细胞)中的离子通道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a28/7781520/1ed9c995c4a7/KCHL_A_1859753_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验