Suppr超能文献

肿瘤生长个体模型中细胞运动性的演变

Evolution of cell motility in an individual-based model of tumour growth.

作者信息

Gerlee P, Anderson A R A

机构信息

Niels Bohr Institute, Center for Models of Life, Copenhagen Ø, Denmark.

出版信息

J Theor Biol. 2009 Jul 7;259(1):67-83. doi: 10.1016/j.jtbi.2009.03.005. Epub 2009 Mar 12.

Abstract

Tumour invasion is driven by proliferation and importantly migration into the surrounding tissue. Cancer cell motility is also critical in the formation of metastases and is therefore a fundamental issue in cancer research. In this paper we investigate the emergence of cancer cell motility in an evolving tumour population using an individual-based modelling approach. In this model of tumour growth each cell is equipped with a micro-environment response network that determines the behaviour or phenotype of the cell based on the local environment. The response network is modelled using a feed-forward neural network, which is subject to mutations when the cells divide. With this model we have investigated the impact of the micro-environment on the emergence of a motile invasive phenotype. The results show that when a motile phenotype emerges the dynamics of the model are radically changed and we observe faster growing tumours exhibiting diffuse morphologies. Further we observe that the emergence of a motile subclone can occur in a wide range of micro-environmental growth conditions. Iterated simulations showed that in identical growth conditions the evolutionary dynamics either converge to a proliferating or migratory phenotype, which suggests that the introduction of cell motility into the model changes the shape of fitness landscape on which the cancer cell population evolves and that it now contains several local maxima. This could have important implications for cancer treatments which focus on the gene level, as our results show that several distinct genotypes and critically distinct phenotypes can emerge and become dominant in the same micro-environment.

摘要

肿瘤侵袭是由增殖驱动的,重要的是向周围组织的迁移。癌细胞的运动性在转移形成中也至关重要,因此是癌症研究中的一个基本问题。在本文中,我们使用基于个体的建模方法研究了不断演变的肿瘤群体中癌细胞运动性的出现。在这个肿瘤生长模型中,每个细胞都配备了一个微环境响应网络,该网络根据局部环境决定细胞的行为或表型。响应网络使用前馈神经网络进行建模,当细胞分裂时会发生突变。通过这个模型,我们研究了微环境对运动侵袭性表型出现的影响。结果表明,当运动表型出现时,模型的动态会发生根本性变化,我们观察到生长更快的肿瘤呈现出弥漫性形态。此外,我们观察到运动亚克隆的出现可以在广泛的微环境生长条件下发生。迭代模拟表明,在相同的生长条件下,进化动态要么收敛到增殖表型,要么收敛到迁移表型,这表明将细胞运动性引入模型会改变癌细胞群体进化所依赖的适应度景观的形状,并且现在它包含几个局部最大值。这可能对专注于基因水平的癌症治疗具有重要意义,因为我们的结果表明,几种不同的基因型以及至关重要的不同表型可以在相同的微环境中出现并占主导地位。

相似文献

1
Evolution of cell motility in an individual-based model of tumour growth.
J Theor Biol. 2009 Jul 7;259(1):67-83. doi: 10.1016/j.jtbi.2009.03.005. Epub 2009 Mar 12.
2
A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype.
J Theor Biol. 2008 Feb 21;250(4):705-22. doi: 10.1016/j.jtbi.2007.10.038. Epub 2007 Nov 4.
3
Modelling evolutionary cell behaviour using neural networks: application to tumour growth.
Biosystems. 2009 Feb;95(2):166-74. doi: 10.1016/j.biosystems.2008.10.007. Epub 2008 Nov 5.
4
An evolutionary hybrid cellular automaton model of solid tumour growth.
J Theor Biol. 2007 Jun 21;246(4):583-603. doi: 10.1016/j.jtbi.2007.01.027. Epub 2007 Feb 12.
7
A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion.
Math Med Biol. 2005 Jun;22(2):163-86. doi: 10.1093/imammb/dqi005. Epub 2005 Mar 21.
8
Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion.
Cell Prolif. 2008 Dec;41(6):980-987. doi: 10.1111/j.1365-2184.2008.00563.x.
9
A Multiscale Approach to the Migration of Cancer Stem Cells: Mathematical Modelling and Simulations.
Bull Math Biol. 2017 Jan;79(1):209-235. doi: 10.1007/s11538-016-0233-6. Epub 2016 Nov 30.
10
Multiscale modelling and nonlinear simulation of vascular tumour growth.
J Math Biol. 2009 Apr;58(4-5):765-98. doi: 10.1007/s00285-008-0216-9. Epub 2008 Sep 10.

引用本文的文献

1
Physics-based tissue simulator to model multicellular systems: A study of liver regeneration and hepatocellular carcinoma recurrence.
PLoS Comput Biol. 2023 Mar 6;19(3):e1010920. doi: 10.1371/journal.pcbi.1010920. eCollection 2023 Mar.
2
Metastasis and the evolution of dispersal.
Proc Biol Sci. 2019 Dec 4;286(1916):20192186. doi: 10.1098/rspb.2019.2186. Epub 2019 Nov 27.
3
Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect.
J Math Biol. 2019 Aug;79(3):941-967. doi: 10.1007/s00285-019-01383-y. Epub 2019 May 24.
4
The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer.
Sci Rep. 2019 Feb 20;9(1):2425. doi: 10.1038/s41598-019-39636-x.
5
Dynamic Load Balancing Strategy for Parallel Tumor Growth Simulations.
J Integr Bioinform. 2019 Feb 14;16(1):20180066. doi: 10.1515/jib-2018-0066.
6
A Review of Cell-Based Computational Modeling in Cancer Biology.
JCO Clin Cancer Inform. 2019 Feb;3:1-13. doi: 10.1200/CCI.18.00069.
7
PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling.
Bioinformatics. 2019 Apr 1;35(7):1188-1196. doi: 10.1093/bioinformatics/bty766.
9
Blood vessel tortuosity selects against evolution of aggressive tumor cells in confined tissue environments: A modeling approach.
PLoS Comput Biol. 2017 Jul 17;13(7):e1005635. doi: 10.1371/journal.pcbi.1005635. eCollection 2017 Jul.
10
Integrated PK-PD and agent-based modeling in oncology.
J Pharmacokinet Pharmacodyn. 2015 Apr;42(2):179-89. doi: 10.1007/s10928-015-9403-7. Epub 2015 Jan 15.

本文引用的文献

1
A single-cell approach in modeling the dynamics of tumor microregions.
Math Biosci Eng. 2005 Jul;2(3):643-55. doi: 10.3934/mbe.2005.2.643.
2
Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion.
Cell Prolif. 2008 Dec;41(6):980-987. doi: 10.1111/j.1365-2184.2008.00563.x.
3
Modelling evolutionary cell behaviour using neural networks: application to tumour growth.
Biosystems. 2009 Feb;95(2):166-74. doi: 10.1016/j.biosystems.2008.10.007. Epub 2008 Nov 5.
4
Microenvironment driven invasion: a multiscale multimodel investigation.
J Math Biol. 2009 Apr;58(4-5):579-624. doi: 10.1007/s00285-008-0210-2. Epub 2008 Oct 7.
5
Dependence of invadopodia function on collagen fiber spacing and cross-linking: computational modeling and experimental evidence.
Biophys J. 2008 Sep;95(5):2203-18. doi: 10.1529/biophysj.108.133199. Epub 2008 May 30.
6
7
A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype.
J Theor Biol. 2008 Feb 21;250(4):705-22. doi: 10.1016/j.jtbi.2007.10.038. Epub 2007 Nov 4.
8
Illuminating the metastatic process.
Nat Rev Cancer. 2007 Oct;7(10):737-49. doi: 10.1038/nrc2229.
9
Stability analysis of a hybrid cellular automaton model of cell colony growth.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051911. doi: 10.1103/PhysRevE.75.051911. Epub 2007 May 17.
10
Hypoxia-driven selection of the metastatic phenotype.
Cancer Metastasis Rev. 2007 Jun;26(2):319-31. doi: 10.1007/s10555-007-9062-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验