Suppr超能文献

当前的计算模型并未揭示神经系统在动脉血压长期控制中的重要性。

Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure.

作者信息

Osborn John W, Averina Viktoria A, Fink Gregory D

机构信息

University of Minnesota, Department of Integrative Biology and Physiology, Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA.

出版信息

Exp Physiol. 2009 Apr;94(4):389-96. doi: 10.1113/expphysiol.2008.043281.

Abstract

Arterial pressure is regulated over long periods of time by neural, hormonal and local control mechanisms, which ultimately determine the total blood volume and how it is distributed between the various vascular compartments of the circulation. A full understanding of the complex interplay of these mechanisms can be greatly facilitated by the use of mathematical models. In 1967, Guyton and Coleman published a model for long-term control of arterial pressure that focused on renal control of body sodium and water and thus total blood volume. The central point of their model is that the long-term level of arterial pressure is determined exclusively by the 'renal function curve', which relates arterial pressure to urinary excretion of salt and water. The contribution of the sympathetic nervous system to setting the long-term level of arterial pressure in the model is limited. In light of the overwhelming evidence for a major role of the sympathetic nervous system in long-term control of arterial pressure and the pathogenesis of hypertension, new mathematical models for long-term control of arterial pressure may be necessary. Despite the prominence and general acceptance of the Guyton-Coleman model in the field of hypertension research, we argue here that it overestimates the importance of renal control of body fluids and total blood volume in blood pressure regulation. Furthermore, we suggest that it is possible to construct an alternative model in which sympathetic nervous system activity plays an important role in long-term control of arterial pressure independent of its effects on total blood volume.

摘要

动脉血压在很长一段时间内受神经、激素和局部控制机制调节,这些机制最终决定总血容量以及它在循环系统各个血管腔室之间的分布方式。使用数学模型可以极大地促进对这些机制复杂相互作用的全面理解。1967年,盖顿和科尔曼发表了一个动脉血压长期控制模型,该模型聚焦于肾脏对机体钠和水的控制,进而对总血容量的控制。他们模型的核心观点是,动脉血压的长期水平完全由“肾功能曲线”决定,该曲线将动脉血压与盐和水的尿排泄量联系起来。在该模型中,交感神经系统对设定动脉血压长期水平的贡献有限。鉴于有压倒性证据表明交感神经系统在动脉血压长期控制和高血压发病机制中起主要作用,可能需要新的动脉血压长期控制数学模型。尽管盖顿 - 科尔曼模型在高血压研究领域很突出且被普遍接受,但我们在此认为,它高估了肾脏对体液和总血容量的控制在血压调节中的重要性。此外,我们认为有可能构建一个替代模型,其中交感神经系统活动在动脉血压长期控制中发挥重要作用而独立于其对总血容量的影响。

相似文献

5
Editorial comment: Montani versus Osborn exchange of views.
Exp Physiol. 2009 Apr;94(4):381-2. doi: 10.1113/expphysiol.2008.043273.
6
A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach.
J Physiol. 2012 Dec 1;590(23):5975-92. doi: 10.1113/jphysiol.2012.228619. Epub 2012 Aug 13.
7
Role of the kidney in the pathogenesis of hypertension: time for a neo-Guytonian paradigm or a paradigm shift?
Am J Physiol Regul Integr Comp Physiol. 2016 Feb 1;310(3):R217-29. doi: 10.1152/ajpregu.00254.2015. Epub 2015 Nov 18.
8
A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex.
Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R846-55. doi: 10.1152/ajpregu.00474.2004.
10
Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis.
Am J Physiol. 1995 Jun;268(6 Pt 2):R1343-58. doi: 10.1152/ajpregu.1995.268.6.R1343.

引用本文的文献

1
The impact of excessive salt intake on human health.
Nat Rev Nephrol. 2022 May;18(5):321-335. doi: 10.1038/s41581-021-00533-0. Epub 2022 Jan 20.
2
The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system.
Cell Tissue Res. 2021 Dec;386(3):455-475. doi: 10.1007/s00441-021-03548-y. Epub 2021 Nov 10.
4
Testing Computer Models Predicting Human Responses to a High-Salt Diet.
Hypertension. 2018 Dec;72(6):1407-1416. doi: 10.1161/HYPERTENSIONAHA.118.11552.
5
Multiscale systems biology of trauma-induced coagulopathy.
Wiley Interdiscip Rev Syst Biol Med. 2018 Jul;10(4):e1418. doi: 10.1002/wsbm.1418. Epub 2018 Feb 27.
6
The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na pump endocrine system.
Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C3-C26. doi: 10.1152/ajpcell.00196.2017. Epub 2017 Nov 7.
7
Brain Gαi 2 -subunit proteins and the prevention of salt sensitive hypertension.
Front Physiol. 2015 Aug 19;6:233. doi: 10.3389/fphys.2015.00233. eCollection 2015.
8
Implementation of a model of bodily fluids regulation.
Acta Biotheor. 2015 Sep;63(3):269-82. doi: 10.1007/s10441-015-9250-3. Epub 2015 May 3.

本文引用的文献

1
Blood volume, blood pressure and total body sodium: internal signalling and output control.
Acta Physiol (Oxf). 2009 Jan;195(1):187-96. doi: 10.1111/j.1748-1716.2008.01932.x. Epub 2008 Oct 28.
2
Levels of renal and extrarenal sympathetic drive in angiotensin II-induced hypertension.
Hypertension. 2008 Apr;51(4):878-83. doi: 10.1161/HYPERTENSIONAHA.107.100800. Epub 2008 Feb 11.
3
Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats.
Hypertension. 2007 Sep;50(3):547-56. doi: 10.1161/HYPERTENSIONAHA.107.090696. Epub 2007 Jul 23.
4
Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model.
Ann Biomed Eng. 2007 Oct;35(10):1800-11. doi: 10.1007/s10439-007-9341-7. Epub 2007 Jun 26.
5
Baroreflex mechanisms regulating mean level of SNA differ from those regulating the timing and entrainment of the sympathetic discharges in rabbits.
Am J Physiol Regul Integr Comp Physiol. 2006 Aug;291(2):R400-9. doi: 10.1152/ajpregu.00204.2005. Epub 2006 Mar 2.
6
The sympathetic control of blood pressure.
Nat Rev Neurosci. 2006 May;7(5):335-46. doi: 10.1038/nrn1902.
7
The 'body fluid pressure control system' relies on the Renin-Angiotensin-aldosterone system: balance studies in freely moving dogs.
Clin Exp Pharmacol Physiol. 2005 May-Jun;32(5-6):394-9. doi: 10.1111/j.1440-1681.2005.04201.x.
9
A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex.
Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R846-55. doi: 10.1152/ajpregu.00474.2004.
10
Problems, possibilities, and pitfalls in studying the arterial baroreflexes' influence over long-term control of blood pressure.
Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R837-45. doi: 10.1152/ajpregu.00456.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验