Suppr超能文献

真菌功能基因组学:可调式敲除-敲入表达及标记策略

Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies.

作者信息

Larrondo Luis F, Colot Hildur V, Baker Christopher L, Loros Jennifer J, Dunlap Jay C

机构信息

Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.

出版信息

Eukaryot Cell. 2009 May;8(5):800-4. doi: 10.1128/EC.00072-09. Epub 2009 Mar 13.

Abstract

Strategies for promoting high-efficiency homologous gene replacement have been developed and adopted for many filamentous fungal species. The next generation of analysis requires the ability to manipulate gene expression and to tag genes expressed from their endogenous loci. Here we present a suite of molecular tools that provide versatile solutions for fungal high-throughput functional genomics studies based on locus-specific modification of any target gene. Additionally, case studies illustrate caveats to presumed overexpression constructs. A tunable expression system and different tagging strategies can provide valuable phenotypic information for uncharacterized genes and facilitate the analysis of essential loci, an emerging problem in systematic deletion studies of haploid organisms.

摘要

促进高效同源基因置换的策略已被开发并应用于许多丝状真菌物种。下一代分析需要具备操纵基因表达以及标记从其内源位点表达的基因的能力。在此,我们展示了一套分子工具,这些工具基于对任何目标基因的位点特异性修饰,为真菌高通量功能基因组学研究提供了通用的解决方案。此外,案例研究说明了假定的过表达构建体存在的问题。一个可调节的表达系统和不同的标记策略可以为未表征的基因提供有价值的表型信息,并有助于分析必需位点,这是单倍体生物系统缺失研究中一个新出现的问题。

相似文献

1
Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies.
Eukaryot Cell. 2009 May;8(5):800-4. doi: 10.1128/EC.00072-09. Epub 2009 Mar 13.
2
Development of new tools for studying gene function in fungi based on the Gateway system.
Fungal Genet Biol. 2008 Aug;45(8):1147-54. doi: 10.1016/j.fgb.2008.04.011. Epub 2008 Apr 29.
3
Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies.
Biotechnol Adv. 2013 Dec;31(8):1562-74. doi: 10.1016/j.biotechadv.2013.08.005. Epub 2013 Aug 26.
4
(Post-)genomics approaches in fungal research.
Brief Funct Genomics. 2014 Nov;13(6):424-39. doi: 10.1093/bfgp/elu028. Epub 2014 Jul 17.
5
Approaches to functional genomics in filamentous fungi.
Cell Res. 2006 Jan;16(1):31-44. doi: 10.1038/sj.cr.7310006.
6
Functional analysis of pathogenicity genes in a genomics world.
Curr Opin Microbiol. 2001 Aug;4(4):387-92. doi: 10.1016/s1369-5274(00)00222-8.
7
Next-generation sequencing and potential applications in fungal genomics.
Methods Mol Biol. 2011;722:51-60. doi: 10.1007/978-1-61779-040-9_4.
8
New and Improved Techniques for the Study of Pathogenic Fungi.
Trends Microbiol. 2016 Jan;24(1):35-50. doi: 10.1016/j.tim.2015.09.008. Epub 2015 Nov 5.
10
FunFEA: an R package for fungal functional enrichment analysis.
BMC Bioinformatics. 2025 May 27;26(1):138. doi: 10.1186/s12859-025-06164-7.

引用本文的文献

1
Transcriptional rewiring of an evolutionarily conserved circadian clock.
EMBO J. 2024 May;43(10):2015-2034. doi: 10.1038/s44318-024-00088-3. Epub 2024 Apr 16.
3
Developing a Temperature-Inducible Transcriptional Rheostat in Neurospora crassa.
mBio. 2023 Feb 28;14(1):e0329122. doi: 10.1128/mbio.03291-22. Epub 2023 Feb 6.
5
An Inactivation Switch Enables Rhythms in a Clock Model.
Int J Mol Sci. 2019 Jun 19;20(12):2985. doi: 10.3390/ijms20122985.
6
Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression.
Appl Microbiol Biotechnol. 2018 May;102(9):3849-3863. doi: 10.1007/s00253-018-8887-7. Epub 2018 Mar 22.
8
Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa.
Genetics. 2016 Sep;204(1):163-76. doi: 10.1534/genetics.116.191064. Epub 2016 Jul 22.
9
The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4357-62. doi: 10.1073/pnas.1406130112. Epub 2015 Mar 23.
10
Bright to dim oscillatory response of the Neurospora circadian oscillator.
J Biol Rhythms. 2014 Feb;29(1):49-59. doi: 10.1177/0748730413517983.

本文引用的文献

2
Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina.
J Biotechnol. 2009 Jan 15;139(2):146-51. doi: 10.1016/j.jbiotec.2008.10.007. Epub 2008 Nov 5.
4
Gene deletion and allelic replacement in the filamentous fungus Podospora anserina.
Curr Genet. 2008 Apr;53(4):249-58. doi: 10.1007/s00294-008-0180-3. Epub 2008 Feb 12.
5
e-Fungi: a data resource for comparative analysis of fungal genomes.
BMC Genomics. 2007 Nov 20;8:426. doi: 10.1186/1471-2164-8-426.
7
Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans.
Mol Microbiol. 2007 Dec;66(6):1579-96. doi: 10.1111/j.1365-2958.2007.06021.x. Epub 2007 Nov 13.
8
Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency.
Curr Genet. 2008 Jan;53(1):59-66. doi: 10.1007/s00294-007-0162-x. Epub 2007 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验