Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin and Humboldt University of Berlin, Philippstr. 13, 10115 Berlin, Germany.
Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
Int J Mol Sci. 2019 Jun 19;20(12):2985. doi: 10.3390/ijms20122985.
Autonomous endogenous time-keeping is ubiquitous across many living organisms, known as the circadian clock when it has a period of about 24 h. Interestingly, the fundamental design principle with a network of interconnected negative and positive feedback loops is conserved through evolution, although the molecular components differ. Filamentous fungus is a well-established chrono-genetics model organism to investigate the underlying mechanisms. The core negative feedback loop of the clock of is composed of the transcription activator White Collar Complex (WCC) (heterodimer of WC1 and WC2) and the inhibitory element called FFC complex, which is made of FRQ (Frequency protein), FRH (Frequency interacting RNA Helicase) and CK1a (Casein kinase 1a). While exploring their temporal dynamics, we investigate how limit cycle oscillations arise and how molecular switches support self-sustained rhythms. We develop a mathematical model of 10 variables with 26 parameters to understand the interactions and feedback among WC1 and FFC elements in nuclear and cytoplasmic compartments. We performed control and bifurcation analysis to show that our novel model produces robust oscillations with a wild-type period of 22.5 h. Our model reveals a switch between WC1-induced transcription and FFC-assisted inactivation of WC1. Using the new model, we also study the possible mechanisms of glucose compensation. A fairly simple model with just three nonlinearities helps to elucidate clock dynamics, revealing a mechanism of rhythms' production. The model can further be utilized to study entrainment and temperature compensation.
自主内源性计时在许多生物体中普遍存在,当它具有约 24 小时的周期时,被称为生物钟。有趣的是,尽管分子成分不同,但具有相互连接的负反馈和正反馈回路网络的基本设计原则在进化中得以保留。丝状真菌是研究潜在机制的成熟的计时遗传学模式生物。的生物钟的核心负反馈回路由转录激活因子 White Collar Complex(WCC)(WC1 和 WC2 的异二聚体)和称为 FFC 复合物的抑制元件组成,FFC 复合物由 FRQ(频率蛋白)、FRH(频率相互作用 RNA 解旋酶)和 CK1a(酪蛋白激酶 1a)组成。在探索它们的时间动态时,我们研究了极限环振荡是如何产生的,以及分子开关如何支持自我维持的节律。我们开发了一个具有 26 个参数的 10 个变量的数学模型,以了解核和细胞质区室中 WC1 和 FFC 元件之间的相互作用和反馈。我们进行了控制和分岔分析,以表明我们的新模型产生了具有野生型周期 22.5 小时的稳健振荡。我们的模型揭示了 WC1 诱导的转录和 FFC 辅助 WC1 失活之间的开关。使用新模型,我们还研究了葡萄糖补偿的可能机制。一个只有三个非线性的相当简单的模型有助于阐明时钟动态,揭示产生节律的机制。该模型可进一步用于研究驯化和温度补偿。