Suppr超能文献

在深部脑刺激(DBS)手术期间通过无监督机器学习从微电极记录中对丘脑底核进行功能定位和可视化。

Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning.

作者信息

Wong S, Baltuch G H, Jaggi J L, Danish S F

机构信息

Department of Neurology, Hospital of the University of Pennsylvania, 3 West Gates Bldg, 3400 Spruce Street, Philadelphia, PA 19104, USA.

出版信息

J Neural Eng. 2009 Apr;6(2):026006. doi: 10.1088/1741-2560/6/2/026006. Epub 2009 Mar 13.

Abstract

Microelectrode recordings are a useful adjunctive method for subthalamic nucleus localization during deep brain stimulation surgery for Parkinson's disease. Attempts to quantitate and standardize this process, using single computational measures of neural activity, have been limited by variability in patient neurophysiology and recording conditions. Investigators have suggested that a multi-feature approach may be necessary for automated approaches to perform within acceptable clinical standards. We present a novel data visualization algorithm and several unique features that address these shortcomings. The algorithm extracts multiple computational features from the microelectrode neurophysiology and integrates them with tools from unsupervised machine learning. The resulting colour-coded map of neural activity reveals activity transitions that correspond to the anatomic boundaries of subcortical structures. Using these maps, a non-neurophysiologist is able to achieve sensitivities of 90% and 95% for STN entry and exit, respectively, to within 0.5 mm accuracy of the current gold standard. The accuracy of this technique is attributed to the multi-feature approach. This activity map can simplify and standardize the process of localizing the subthalamic nucleus (STN) for neurostimulation. Because this method does not require a stationary electrode for careful recording of unit activity for spike sorting, the length of the operation may be shortened.

摘要

在帕金森病的脑深部刺激手术中,微电极记录是一种用于丘脑底核定位的有用辅助方法。试图使用神经活动的单一计算指标来量化和标准化这一过程,受到患者神经生理学和记录条件变异性的限制。研究人员认为,对于自动方法在可接受的临床标准内运行,多特征方法可能是必要的。我们提出了一种新颖的数据可视化算法和几个独特的特征来解决这些缺点。该算法从微电极神经生理学中提取多个计算特征,并将它们与无监督机器学习工具集成。由此产生的神经活动彩色编码图揭示了与皮质下结构解剖边界相对应的活动转变。使用这些地图,非神经生理学家能够分别在当前金标准0.5毫米的精度范围内,实现丘脑底核进入和退出的敏感度分别为90%和95%。这项技术的准确性归因于多特征方法。这种活动图可以简化和标准化用于神经刺激的丘脑底核(STN)定位过程。由于这种方法不需要固定电极来仔细记录单元活动以进行尖峰分类,手术时间可能会缩短。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验