神经外科中的机器学习:迈向复杂输入、可操作预测和可推广转化

Machine Learning in Neurosurgery: Toward Complex Inputs, Actionable Predictions, and Generalizable Translations.

作者信息

Schonfeld Ethan, Mordekai Nicole, Berg Alex, Johnstone Thomas, Shah Aaryan, Shah Vaibhavi, Haider Ghani, Marianayagam Neelan J, Veeravagu Anand

机构信息

Neurosurgery, Stanford University School of Medicine, Stanford, USA.

Medicine, Tel Aviv University, Tel Aviv, ISR.

出版信息

Cureus. 2024 Jan 9;16(1):e51963. doi: 10.7759/cureus.51963. eCollection 2024 Jan.

Abstract

Machine learning can predict neurosurgical diagnosis and outcomes, power imaging analysis, and perform robotic navigation and tumor labeling. State-of-the-art models can reconstruct and generate images, predict surgical events from video, and assist in intraoperative decision-making. In this review, we will detail the neurosurgical applications of machine learning, ranging from simple to advanced models, and their potential to transform patient care. As machine learning techniques, outputs, and methods become increasingly complex, their performance is often more impactful yet increasingly difficult to evaluate. We aim to introduce these advancements to the neurosurgical audience while suggesting major potential roadblocks to their safe and effective translation. Unlike the previous generation of machine learning in neurosurgery, the safe translation of recent advancements will be contingent on neurosurgeons' involvement in model development and validation.

摘要

机器学习可以预测神经外科诊断和结果、助力成像分析,并执行机器人导航和肿瘤标记。最先进的模型可以重建和生成图像、从视频中预测手术事件,并协助术中决策。在本综述中,我们将详细介绍机器学习在神经外科中的应用,从简单模型到先进模型,以及它们改变患者护理的潜力。随着机器学习技术、输出和方法变得越来越复杂,其性能往往更具影响力,但也越来越难以评估。我们旨在向神经外科领域的读者介绍这些进展,同时指出其安全有效转化的主要潜在障碍。与神经外科领域的上一代机器学习不同,近期进展的安全转化将取决于神经外科医生参与模型的开发和验证。

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索