Suppr超能文献

短暂转录停顿的起源。

The origin of short transcriptional pauses.

作者信息

Depken Martin, Galburt Eric A, Grill Stephan W

机构信息

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.

出版信息

Biophys J. 2009 Mar 18;96(6):2189-93. doi: 10.1016/j.bpj.2008.12.3918.

Abstract

RNA polymerases are protein molecular machines that transcribe genetic information from DNA into RNA. The elongation of the RNA molecule is frequently interrupted by pauses, the detailed nature of which remains controversial. Here we ask whether backtracking, the central mechanism behind long pauses, could also be responsible for short pauses normally attributed to the ubiquitous pause state. To this end, we model backtracking as a force-biased random walk, giving rise to a broad distribution of pause durations as observed in experiments. Importantly, we find that this single mechanism naturally generates two populations of pauses that are distinct both in duration and trajectory: long-time pauses with the expected behavior of diffusive backtracks, and a new class of short-time backtracks with characteristics similar to those of the ubiquitous pause. These characteristics include an apparent force insensitivity and immobility of the polymerase. Based on these results and a quantitative comparison to published pause trajectories measured with optical tweezers, we suggest that a significant fraction of short pauses are simply due to backtracking.

摘要

RNA聚合酶是将遗传信息从DNA转录为RNA的蛋白质分子机器。RNA分子的延伸常常被暂停打断,其详细性质仍存在争议。在这里,我们探讨长暂停背后的核心机制——回溯,是否也能解释通常归因于普遍存在的暂停状态的短暂停。为此,我们将回溯建模为一种力偏置随机游走,从而产生实验中观察到的广泛的暂停持续时间分布。重要的是,我们发现这一单一机制自然地产生了两类在持续时间和轨迹上都不同的暂停:具有扩散性回溯预期行为的长时间暂停,以及一类新的具有与普遍存在的暂停相似特征的短时间回溯。这些特征包括聚合酶明显的力不敏感性和不动性。基于这些结果以及与用光学镊子测量的已发表的暂停轨迹的定量比较,我们认为相当一部分短暂停仅仅是由于回溯造成的。

相似文献

1
The origin of short transcriptional pauses.
Biophys J. 2009 Mar 18;96(6):2189-93. doi: 10.1016/j.bpj.2008.12.3918.
2
Dynamics of backtracking long pauses of RNA polymerase.
Biochim Biophys Acta. 2009 Mar;1789(3):212-9. doi: 10.1016/j.bbagrm.2008.11.005. Epub 2008 Dec 6.
3
E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase.
J Mol Biol. 2010 May 28;399(1):17-30. doi: 10.1016/j.jmb.2010.03.051. Epub 2010 Apr 8.
5
Backtracking dynamics of RNA polymerase: pausing and error correction.
J Phys Condens Matter. 2013 Sep 18;25(37):374104. doi: 10.1088/0953-8984/25/37/374104. Epub 2013 Aug 15.
7
Fluctuations, pauses, and backtracking in DNA transcription.
Biophys J. 2008 Jan 15;94(2):334-48. doi: 10.1529/biophysj.107.105767. Epub 2007 Aug 24.
8
Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking.
Cell. 2003 Nov 14;115(4):437-47. doi: 10.1016/s0092-8674(03)00845-6.
9
Transcriptional Pausing as a Mediator of Bacterial Gene Regulation.
Annu Rev Microbiol. 2021 Oct 8;75:291-314. doi: 10.1146/annurev-micro-051721-043826. Epub 2021 Aug 4.
10
A dynamic model for transcription elongation and sequence-dependent short pauses by RNA polymerase.
Biosystems. 2008 Sep;93(3):199-210. doi: 10.1016/j.biosystems.2008.04.013. Epub 2008 May 4.

引用本文的文献

2
Reciprocating RNA Polymerase batters through roadblocks.
Nat Commun. 2024 Apr 12;15(1):3193. doi: 10.1038/s41467-024-47531-x.
3
β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck.
Nucleic Acids Res. 2021 Oct 11;49(18):10221-10234. doi: 10.1093/nar/gkab803.
4
The nucleotide addition cycle of the SARS-CoV-2 polymerase.
Cell Rep. 2021 Aug 31;36(9):109650. doi: 10.1016/j.celrep.2021.109650. Epub 2021 Aug 17.
5
DNA replication: single-molecule manipulation data analysis and models.
Comput Struct Biotechnol J. 2021 Jun 24;19:3765-3778. doi: 10.1016/j.csbj.2021.06.032. eCollection 2021.
6
The nucleotide addition cycle of the SARS-CoV-2 polymerase.
bioRxiv. 2021 Mar 27:2021.03.27.437309. doi: 10.1101/2021.03.27.437309.
7
Basic mechanisms and kinetics of pause-interspersed transcript elongation.
Nucleic Acids Res. 2021 Jan 11;49(1):15-24. doi: 10.1093/nar/gkaa1182.
9
Bayesian inference and comparison of stochastic transcription elongation models.
PLoS Comput Biol. 2020 Feb 14;16(2):e1006717. doi: 10.1371/journal.pcbi.1006717. eCollection 2020 Feb.
10
The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase.
J Mol Biol. 2019 Sep 20;431(20):3975-4006. doi: 10.1016/j.jmb.2019.05.042. Epub 2019 May 31.

本文引用的文献

1
Sequence heterogeneity and the dynamics of molecular motors.
J Phys Condens Matter. 2005 Nov 30;17(47):S3871-86. doi: 10.1088/0953-8984/17/47/016. Epub 2005 Nov 4.
2
Thermal probing of E. coli RNA polymerase off-pathway mechanisms.
J Mol Biol. 2008 Oct 10;382(3):628-37. doi: 10.1016/j.jmb.2008.06.079. Epub 2008 Jul 3.
3
Single-molecule studies of RNA polymerase: motoring along.
Annu Rev Biochem. 2008;77:149-76. doi: 10.1146/annurev.biochem.77.073106.100741.
4
Fluctuations, pauses, and backtracking in DNA transcription.
Biophys J. 2008 Jan 15;94(2):334-48. doi: 10.1529/biophysj.107.105767. Epub 2007 Aug 24.
6
Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner.
Nature. 2007 Apr 12;446(7137):820-3. doi: 10.1038/nature05701. Epub 2007 Mar 14.
7
Transcript-assisted transcriptional proofreading.
Science. 2006 Jul 28;313(5786):518-20. doi: 10.1126/science.1127422.
8
Sequence-resolved detection of pausing by single RNA polymerase molecules.
Cell. 2006 Jun 16;125(6):1083-94. doi: 10.1016/j.cell.2006.04.032.
9
Thermodynamic and kinetic modeling of transcriptional pausing.
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4439-44. doi: 10.1073/pnas.0600508103. Epub 2006 Mar 13.
10
Direct observation of base-pair stepping by RNA polymerase.
Nature. 2005 Nov 24;438(7067):460-5. doi: 10.1038/nature04268. Epub 2005 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验