Landick Robert
Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; email:
Annu Rev Microbiol. 2021 Oct 8;75:291-314. doi: 10.1146/annurev-micro-051721-043826. Epub 2021 Aug 4.
Cellular life depends on transcription of DNA by RNA polymerase to express genetic information. RNA polymerase has evolved not just to read information from DNA and write it to RNA but also to sense and process information from the cellular and extracellular environments. Much of this information processing occurs during transcript elongation, when transcriptional pausing enables regulatory decisions. Transcriptional pauses halt RNA polymerase in response to DNA and RNA sequences and structures at locations and times that help coordinate interactions with small molecules and transcription factors important for regulation. Four classes of transcriptional pause signals are now evident after decades of study: elemental pauses, backtrack pauses, hairpin-stabilized pauses, and regulator-stabilized pauses. In this review, I describe current understanding of the molecular mechanisms of these four classes of pause signals, remaining questions about how RNA polymerase responds to pause signals, and the many exciting directions now open to understand pausing and the regulation of transcript elongation on a genome-wide scale.
细胞生命依赖于RNA聚合酶对DNA的转录来表达遗传信息。RNA聚合酶不仅进化到能够读取DNA中的信息并将其转录到RNA中,还能感知和处理来自细胞内和细胞外环境的信息。这种信息处理大多发生在转录延伸过程中,此时转录暂停能够做出调控决策。转录暂停会根据DNA和RNA的序列及结构,在有助于协调与对调控至关重要的小分子和转录因子相互作用的位置和时间,使RNA聚合酶停止。经过数十年的研究,现在有四类转录暂停信号已清晰可见:基本暂停、回溯暂停、发夹稳定暂停和调节因子稳定暂停。在这篇综述中,我描述了目前对这四类暂停信号分子机制的理解,关于RNA聚合酶如何响应暂停信号仍存在的问题,以及现在为在全基因组范围内理解暂停和转录延伸调控而开启的许多令人兴奋的研究方向。