Chen M-F, Wang J-D, Su T-M
Department of Chemistry, National Taiwan University, Taipei, Taiwan.
Biophys J. 2009 Mar 18;96(6):2479-89. doi: 10.1016/j.bpj.2008.12.3910.
We explored the concentration gradient effects of the sodium and lithium ions and the deuterium isotope's effects on the activities of H(+)-ATP synthase from chloroplasts (CF(0)F(1)). We found that the sodium concentration gradient can drive the ATP synthesis reaction of CF(0)F(1). In contrast, the lithium ion can be an efficient enzyme-inhibitor by blocking the entrance channel of the ion translocation pathway in CF(0). In the presence of sodium or lithium ions and with the application of a membrane potential, unexpected enzyme behaviors of CF(0)F(1) were evident. To account for these observations, we propose that both of the sodium and lithium ions could undergo localized hydrolysis reactions in the chemical environment of the ion channel of CF(0). The protons generated locally could proceed to complete the ion translocation process in the ATP synthesis reaction of CF(0)F(1). Experimental and theoretical deuterium isotope effects of the localized hydrolysis on the activities of CF(0)F(1), and the energetics of these related reactions, support this proposed mechanism. Our experimental observations could be understood in the framework of the well-established ion translocation models for the H(+)-ATP synthase from Escherichia coli, and the Na(+)-ATP synthase from Propionigenium modestum and Ilyobacter tartaricus.
我们研究了钠离子和锂离子的浓度梯度效应以及氘同位素对叶绿体H(+)-ATP合酶(CF(0)F(1))活性的影响。我们发现钠离子浓度梯度可以驱动CF(0)F(1)的ATP合成反应。相比之下,锂离子可通过阻断CF(0)中离子转运途径的入口通道而成为一种有效的酶抑制剂。在存在钠离子或锂离子并施加膜电位的情况下,CF(0)F(1)出现了意想不到的酶行为。为了解释这些观察结果,我们提出钠离子和锂离子都可能在CF(0)离子通道的化学环境中发生局部水解反应。局部产生的质子可继续完成CF(0)F(1)ATP合成反应中的离子转运过程。局部水解对CF(0)F(1)活性的实验和理论氘同位素效应以及这些相关反应的能量学支持了这一提出的机制。我们的实验观察结果可以在已确立的大肠杆菌H(+)-ATP合酶以及丙酸栖热菌和酒石酸伊氏菌Na(+)-ATP合酶的离子转运模型框架内得到理解。