Suppr超能文献

一种用于蛋白质折叠识别和分子动力学模拟的粗粒度势。

A coarse-grained potential for fold recognition and molecular dynamics simulations of proteins.

作者信息

Májek Peter, Elber Ron

机构信息

Department of Computer Science, Upson Hall 4130, Cornell University, Ithaca, New York 14853-7501, USA.

出版信息

Proteins. 2009 Sep;76(4):822-36. doi: 10.1002/prot.22388.

Abstract

A coarse-grained potential for protein simulations and fold ranking is presented. The potential is based on a two-point model of individual amino acids and a specific implementation of hydrogen bonding. Parameters are determined for distance dependent pair interactions, pseudo bonds, angles, and torsions. A scaling factor for a hydrogen bonding term is also determined. Iterative sampling for 4867 proteins reproduces distributions of internal coordinates and distances observed in the Protein Data Bank. The adjustment of the potential and resampling are in the spirit of the generalized ensemble approach. No native structure information (e.g., secondary structure) is used in the calculation of the potential or in the simulation of a particular protein. The potential is subject to two tests as follows: (i) simulations of 956 globular proteins in the neighborhood of their native folds (these proteins were not used in the training set) and (ii) discrimination between native and decoy structures for 2470 proteins with 305,000 decoys and the "Decoys 'R' Us" dataset. In the first test, 58% of tested proteins stay within 5 A from the native fold in Molecular Dynamics simulations of more than 20 nanoseconds using the new potential. The potential is also useful in differentiating between correct and approximate folds providing significant signal for structure prediction algorithms. Sampling with the potential consistently regenerates the distribution of distances and internal coordinates it learned. Nevertheless, during Molecular Dynamics simulations structures are found that reproduce the learned distributions but are far from the native fold.

摘要

提出了一种用于蛋白质模拟和折叠排序的粗粒度势函数。该势函数基于单个氨基酸的两点模型以及氢键的特定实现方式。确定了距离依赖对相互作用、伪键、角度和扭转的参数。还确定了氢键项的缩放因子。对4867种蛋白质进行迭代采样,可重现蛋白质数据库中观察到的内部坐标和距离分布。势函数的调整和重新采样遵循广义系综方法的精神。在势函数计算或特定蛋白质模拟中未使用天然结构信息(例如二级结构)。该势函数接受如下两项测试:(i)对956种球状蛋白质在其天然折叠附近进行模拟(这些蛋白质未用于训练集),以及(ii)使用“Decoys 'R' Us”数据集对2470种蛋白质及其305,000个诱饵结构进行天然结构与诱饵结构的区分。在第一项测试中,使用新势函数在超过20纳秒的分子动力学模拟中,58%的测试蛋白质与天然折叠的距离保持在5埃以内。该势函数在区分正确折叠和近似折叠方面也很有用,为结构预测算法提供了显著信号。使用该势函数进行采样能够持续重现其学习到的距离和内部坐标分布。然而,在分子动力学模拟过程中,发现一些结构虽然重现了学习到的分布,但却与天然折叠相差甚远。

相似文献

2
A reduced protein model with accurate native-structure identification ability.
Proteins. 2003 Dec 1;53(4):889-907. doi: 10.1002/prot.10498.
3
A coarse-grained protein force field for folding and structure prediction.
Proteins. 2007 Nov 1;69(2):394-408. doi: 10.1002/prot.21505.
4
TOUCHSTONE II: a new approach to ab initio protein structure prediction.
Biophys J. 2003 Aug;85(2):1145-64. doi: 10.1016/S0006-3495(03)74551-2.
5
Teaching computers to fold proteins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 1):030903. doi: 10.1103/PhysRevE.70.030903. Epub 2004 Sep 27.
7
Protocols for efficient simulations of long-time protein dynamics using coarse-grained CABS model.
Methods Mol Biol. 2014;1137:235-50. doi: 10.1007/978-1-4939-0366-5_16.
8
Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models.
J Struct Funct Genomics. 2011 Jul;12(2):137-47. doi: 10.1007/s10969-011-9113-3. Epub 2011 Jun 15.

引用本文的文献

1
Benchmarking coarse-grained models of organic semiconductors via deep backmapping.
Front Chem. 2022 Sep 9;10:982757. doi: 10.3389/fchem.2022.982757. eCollection 2022.
2
Statistical potentials from the Gaussian scaling behaviour of chain fragments buried within protein globules.
PLoS One. 2022 Jan 27;17(1):e0254969. doi: 10.1371/journal.pone.0254969. eCollection 2022.
3
Finding the needle in the haystack: towards solving the protein-folding problem computationally.
Crit Rev Biochem Mol Biol. 2018 Feb;53(1):1-28. doi: 10.1080/10409238.2017.1380596. Epub 2017 Oct 4.
5
Recent advances in transferable coarse-grained modeling of proteins.
Adv Protein Chem Struct Biol. 2014;96:143-80. doi: 10.1016/bs.apcsb.2014.06.005. Epub 2014 Aug 24.
6
9
On simplified global nonlinear function for fitness landscape: a case study of inverse protein folding.
PLoS One. 2014 Aug 11;9(8):e104403. doi: 10.1371/journal.pone.0104403. eCollection 2014.
10
The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems.
Chem Soc Rev. 2014 Jul 7;43(13):4871-93. doi: 10.1039/c4cs00048j. Epub 2014 Apr 23.

本文引用的文献

1
A computational pathway for bracketing native-like structures fo small alpha helical globular proteins.
Phys Chem Chem Phys. 2005 Jun 7;7(11):2364-75. doi: 10.1039/b502226f.
3
Protein model refinement using an optimized physics-based all-atom force field.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8268-73. doi: 10.1073/pnas.0800054105. Epub 2008 Jun 11.
6
OPUS-PSP: an orientation-dependent statistical all-atom potential derived from side-chain packing.
J Mol Biol. 2008 Feb 8;376(1):288-301. doi: 10.1016/j.jmb.2007.11.033. Epub 2007 Nov 19.
7
Probing protein fold space with a simplified model.
J Mol Biol. 2008 Jan 25;375(4):920-33. doi: 10.1016/j.jmb.2007.10.087. Epub 2007 Nov 9.
8
NPIDB: a database of nucleic acids-protein interactions.
Bioinformatics. 2007 Dec 1;23(23):3247-8. doi: 10.1093/bioinformatics/btm519. Epub 2007 Oct 31.
9
A coarse-grained alpha-carbon protein model with anisotropic hydrogen-bonding.
Proteins. 2008 Feb 15;70(3):626-38. doi: 10.1002/prot.21515.
10
The MARTINI force field: coarse grained model for biomolecular simulations.
J Phys Chem B. 2007 Jul 12;111(27):7812-24. doi: 10.1021/jp071097f. Epub 2007 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验