Suppr超能文献

乳腺钼靶摄影中的计算机辅助肿块检测:通过灰度不变秩let纹理特征减少假阳性

Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features.

作者信息

Masotti Matteo, Lanconelli Nico, Campanini Renato

机构信息

Department of Physics, University of Bologna, Viale Berti-Pichat 6/2, 40127 Bologna, Italy.

出版信息

Med Phys. 2009 Feb;36(2):311-6. doi: 10.1118/1.3049588.

Abstract

In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks when compared to the previous one. Specifically, at 60%, 65%, and 70% per-mammogram sensitivity, the new CAD system achieves 0.50, 0.68, and 0.92 FP marks per mammogram, whereas at 70%, 75%, and 80% per-case sensitivity it achieves 0.37, 0.48, and 0.71 FP marks per mammogram, respectively. Conversely, at the same sensitivities, the previous CAD system reached 0.71, 0.87, and 1.15 FP marks per mammogram, and 0.57, 0.73, and 0.92 FPs per mammogram. Also, statistical significance of the difference between the two per-mammogram and per-case FROC curves is demonstrated by the p-value < 0.001 returned by jackknife FROC analysis performed on the two CAD systems.

摘要

在这项工作中,提出了灰度不变秩次纹理特征,用于在乳腺肿块的计算机辅助检测(CAD)中减少假阳性(FPR)。该提议基于两个主要考虑因素。首先,在我们之前的CAD系统中幸存的假阳性(FP)标记似乎具有特定的纹理属性,可用于将它们与肿块区分开来。其次,我们之前的CAD系统通过秩次变换将感兴趣区域编码为秩次图像,从而实现对线性/非线性单调灰度变换的不变性,秩次变换是一种类似于小波变换的图像变换,但处理的是像素的秩而不是其灰度值。因此,本文提出的新FPR方法定义了一组纹理特征,这些特征直接从与我们之前的CAD系统中幸存的感兴趣区域对应的秩次图像中计算得出,即秩次纹理特征;然后,使用支持向量机(SVM)分类器进行判别。这种方法的结果是,基于纹理的信息用于区分在我们之前的CAD系统中幸存的FP标记;同时,保证了新CAD系统对线性/非线性单调灰度变换的不变性,因为秩次纹理特征是从本身通过构造就具有此属性的秩次图像中计算得出的。为了强调之前和新CAD系统的灰度不变性,在具有不同灰度动态范围的乳腺X线照片上进行训练和测试时,不进行任何中间参数调整;特别是,在从公开可用的数字数据库中获取的模拟数字化乳腺X线照片上进行训练,而在从内部数据库中获取的全场数字化乳腺X线照片上进行测试。对这两个CAD系统的自由响应接收器操作特性(FROC)曲线分析表明,与之前的方法相比,新方法实现了更高的FP标记减少率。具体而言,在每幅乳腺X线照片敏感度为60%、65%和70%时,新CAD系统每幅乳腺X线照片的FP标记数分别为0.50、0.68和0.92,而在每例敏感度为70%—— 75%和80%时,每幅乳腺X线照片的FP标记数分别为0.37、0.48和0.71。相反,在相同的敏感度下,之前的CAD系统每幅乳腺X线照片的FP标记数分别为0.71、0.87和1.15,每幅乳腺X线照片的FP数分别为0.57、0.73和0.92。此外,对这两个CAD系统进行刀切FROC分析得出的p值<0.001,证明了两幅乳腺X线照片和每例FROC曲线之间差异的统计学显著性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验