Shen Yiqiu, Wu Nan, Phang Jason, Park Jungkyu, Liu Kangning, Tyagi Sudarshini, Heacock Laura, Kim S Gene, Moy Linda, Cho Kyunghyun, Geras Krzysztof J
Center for Data Science, New York University, 60 5th Ave, New York, NY 10011, USA.
Department of Radiology, NYU School of Medicine, 530 1st Ave, New York, NY 10016, USA.
Med Image Anal. 2021 Feb;68:101908. doi: 10.1016/j.media.2020.101908. Epub 2020 Dec 16.
Medical images differ from natural images in significantly higher resolutions and smaller regions of interest. Because of these differences, neural network architectures that work well for natural images might not be applicable to medical image analysis. In this work, we propose a novel neural network model to address these unique properties of medical images. This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions. It then applies another higher-capacity network to collect details from chosen regions. Finally, it employs a fusion module that aggregates global and local information to make a prediction. While existing methods often require lesion segmentation during training, our model is trained with only image-level labels and can generate pixel-level saliency maps indicating possible malignant findings. We apply the model to screening mammography interpretation: predicting the presence or absence of benign and malignant lesions. On the NYU Breast Cancer Screening Dataset, our model outperforms (AUC = 0.93) ResNet-34 and Faster R-CNN in classifying breasts with malignant findings. On the CBIS-DDSM dataset, our model achieves performance (AUC = 0.858) on par with state-of-the-art approaches. Compared to ResNet-34, our model is 4.1x faster for inference while using 78.4% less GPU memory. Furthermore, we demonstrate, in a reader study, that our model surpasses radiologist-level AUC by a margin of 0.11.
医学图像与自然图像不同,其分辨率显著更高,感兴趣区域更小。由于这些差异,适用于自然图像的神经网络架构可能不适用于医学图像分析。在这项工作中,我们提出了一种新颖的神经网络模型来处理医学图像的这些独特特性。该模型首先在整个图像上使用一个低容量但内存高效的网络来识别最具信息性的区域。然后,它应用另一个更高容量的网络从选定区域收集细节。最后,它采用一个融合模块来聚合全局和局部信息以进行预测。虽然现有方法在训练期间通常需要病变分割,但我们的模型仅使用图像级标签进行训练,并且可以生成指示可能恶性发现的像素级显著性图。我们将该模型应用于乳腺钼靶筛查解读:预测良性和恶性病变的存在与否。在纽约大学乳腺癌筛查数据集上,我们的模型在对有恶性发现的乳房进行分类时优于(AUC = 0.93)ResNet - 34和Faster R - CNN。在CBIS - DDSM数据集上,我们的模型达到了与现有最先进方法相当的性能(AUC = 0.858)。与ResNet - 34相比,我们的模型推理速度快4.1倍,同时使用的GPU内存减少78.4%。此外,在一项读者研究中,我们证明我们的模型比放射科医生级别的AUC高出0.11。