Suppr超能文献

相似文献

1
An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization.
Med Image Anal. 2021 Feb;68:101908. doi: 10.1016/j.media.2020.101908. Epub 2020 Dec 16.
2
Globally-Aware Multiple Instance Classifier for Breast Cancer Screening.
Mach Learn Med Imaging. 2019 Oct;11861:18-26. doi: 10.1007/978-3-030-32692-0_3. Epub 2019 Oct 10.
5
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening.
IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194. doi: 10.1109/TMI.2019.2945514. Epub 2019 Oct 7.
6
An Efficient Deep Neural Network to Classify Large 3D Images With Small Objects.
IEEE Trans Med Imaging. 2024 Jan;43(1):351-365. doi: 10.1109/TMI.2023.3302799. Epub 2024 Jan 2.
7
Convolutional neural network for automated mass segmentation in mammography.
BMC Bioinformatics. 2020 Dec 9;21(Suppl 1):192. doi: 10.1186/s12859-020-3521-y.
8
Looking for Abnormalities in Mammograms With Self- and Weakly Supervised Reconstruction.
IEEE Trans Med Imaging. 2021 Oct;40(10):2711-2722. doi: 10.1109/TMI.2021.3050040. Epub 2021 Sep 30.
9
Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network.
Biosensors (Basel). 2021 Oct 26;11(11):419. doi: 10.3390/bios11110419.
10
YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
Comput Methods Programs Biomed. 2022 Jun;221:106903. doi: 10.1016/j.cmpb.2022.106903. Epub 2022 May 23.

引用本文的文献

2
Local Extremum Mapping for Weak Supervision Learning on Mammogram Classification and Localization.
Bioengineering (Basel). 2025 Mar 21;12(4):325. doi: 10.3390/bioengineering12040325.
3
Frozen Large-Scale Pretrained Vision-Language Models are the Effective Foundational Backbone for Multimodal Breast Cancer Prediction.
IEEE J Biomed Health Inform. 2025 May;29(5):3234-3246. doi: 10.1109/JBHI.2024.3507638. Epub 2025 May 6.
4
Advancement in medical report generation: current practices, challenges, and future directions.
Med Biol Eng Comput. 2025 May;63(5):1249-1270. doi: 10.1007/s11517-024-03265-y. Epub 2024 Dec 21.
5
Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis.
Comput Struct Biotechnol J. 2024 Aug 12;24:542-560. doi: 10.1016/j.csbj.2024.08.005. eCollection 2024 Dec.
6
Radiograph-based rheumatoid arthritis diagnosis via convolutional neural network.
BMC Med Imaging. 2024 Jul 22;24(1):180. doi: 10.1186/s12880-024-01362-w.
7
Quantifying impairment and disease severity using AI models trained on healthy subjects.
NPJ Digit Med. 2024 Jul 6;7(1):180. doi: 10.1038/s41746-024-01173-x.
8
Reproducibility and Explainability of Deep Learning in Mammography: A Systematic Review of Literature.
Indian J Radiol Imaging. 2023 Oct 10;34(3):469-487. doi: 10.1055/s-0043-1775737. eCollection 2024 Jul.
10
Predicting Clinician Fixations on Glaucoma OCT Reports via CNN-Based Saliency Prediction Methods.
IEEE Open J Eng Med Biol. 2024 Feb 20;5:191-197. doi: 10.1109/OJEMB.2024.3367492. eCollection 2024.

本文引用的文献

1
Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers.
Radiol Artif Intell. 2020 Mar 25;2(2):e200029. doi: 10.1148/ryai.2020200029. eCollection 2020 Mar.
2
Globally-Aware Multiple Instance Classifier for Breast Cancer Screening.
Mach Learn Med Imaging. 2019 Oct;11861:18-26. doi: 10.1007/978-3-030-32692-0_3. Epub 2019 Oct 10.
3
Deep Neural Networks With Region-Based Pooling Structures for Mammographic Image Classification.
IEEE Trans Med Imaging. 2020 Jun;39(6):2246-2255. doi: 10.1109/TMI.2020.2968397. Epub 2020 Jan 21.
4
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
5
International evaluation of an AI system for breast cancer screening.
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.
6
Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks.
Cancers (Basel). 2019 Oct 16;11(10):1579. doi: 10.3390/cancers11101579.
7
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening.
IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194. doi: 10.1109/TMI.2019.2945514. Epub 2019 Oct 7.
8
Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives.
Radiology. 2019 Nov;293(2):246-259. doi: 10.1148/radiol.2019182627. Epub 2019 Sep 24.
9
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.
Nat Med. 2019 Aug;25(8):1301-1309. doi: 10.1038/s41591-019-0508-1. Epub 2019 Jul 15.
10
Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network.
Med Image Anal. 2019 Oct;57:1-17. doi: 10.1016/j.media.2019.06.007. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验