Soto-Crespo J M, Akhmediev N, Mejia-Cortés C, Devine N
Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid, Spain.
Opt Express. 2009 Mar 16;17(6):4236-50. doi: 10.1364/oe.17.004236.
We study dissipative ring solitons with vorticity in the frame of the (2+1)-dimensional cubic-quintic complex Ginzburg-Landau equation. In dissipative media, radially symmetric ring structures with any vorticity m can be stable in a finite range of parameters. Beyond the region of stability, the solitons lose the radial symmetry but may remain stable, keeping the same value of the topological charge. We have found bifurcations into solitons with n-fold bending symmetry, with n independent on m. Solitons without circular symmetry can also display (m + 1)-fold modulation behaviour. A sequence of bifurcations can transform the ring soliton into a pulsating or chaotic state which keeps the same value of the topological charge as the original ring.
我们在(2 + 1)维立方-五次复金兹堡-朗道方程的框架下研究具有涡度的耗散环形孤子。在耗散介质中,具有任意涡度m的径向对称环形结构在有限的参数范围内可以是稳定的。在稳定区域之外,孤子失去径向对称性,但可能仍然稳定,保持相同的拓扑电荷值。我们发现了向具有n重弯曲对称性的孤子的分岔,其中n与m无关。没有圆对称性的孤子也可以表现出(m + 1)重调制行为。一系列分岔可以将环形孤子转变为脉动或混沌状态,其保持与原始环相同的拓扑电荷值。