Appl Opt. 2023 Feb 10;62(5):1328-1336. doi: 10.1364/AO.478013.
The effects of intrapulse Raman scattering (IRS) on dissipative solitons in a mode-locked fiber laser are studied numerically. This research contributes to understanding the impact of IRS on the stability of pulsating soliton solutions of the complex cubic-quintic Ginzburg-Landau equation (in the anomalous dispersion region). It is found that IRS causes an additional loss on the pulse and leads to balance between dissipative effects to generate stable dissipative solitons. The regions of parameters where stationary, pulsating, and chaotic solitons are generated are depicted considering IRS and without it. Regarding the results, the region of the existence of stable solitons becomes larger in the presence of IRS. There is an important trade-off between output pulse energy and laser stability by increasing the IRS parameter. IRS can transform pulsating solitons into stable solitons for a wide range of parameter values. However, the pulse energy is reduced. The bifurcation diagram shows that period doubling and period quadrupling do not occur in the presence of IRS.
数值研究了腔内拉曼散射(IRS)对锁模光纤激光器中耗散孤子的影响。这项研究有助于理解 IRS 对复立方五次 Ginzburg-Landau 方程(在反常色散区)脉冲孤子解稳定性的影响。结果表明,IRS 会对脉冲造成额外的损耗,并在耗散效应之间达到平衡,从而产生稳定的耗散孤子。考虑 IRS 和不考虑 IRS 的情况下,描绘了产生稳定孤子、脉冲孤子和混沌孤子的参数区域。结果表明,存在 IRS 时,稳定孤子的存在区域会变大。通过增加 IRS 参数,可以在输出脉冲能量和激光稳定性之间取得重要的权衡。IRS 可以将脉冲孤子转换为稳定孤子,适用于广泛的参数值。但是,脉冲能量会降低。分岔图表明,存在 IRS 时不会发生倍周期和四倍周期。