Koder Ronald L, Anderson J L Ross, Solomon Lee A, Reddy Konda S, Moser Christopher C, Dutton P Leslie
The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Nature. 2009 Mar 19;458(7236):305-9. doi: 10.1038/nature07841.
The principles of natural protein engineering are obscured by overlapping functions and complexity accumulated through natural selection and evolution. Completely artificial proteins offer a clean slate on which to define and test these protein engineering principles, while recreating and extending natural functions. Here we introduce this method with the design of an oxygen transport protein, akin to human neuroglobin. Beginning with a simple and unnatural helix-forming sequence with just three different amino acids, we assembled a four-helix bundle, positioned histidines to bis-histidine ligate haems, and exploited helical rotation and glutamate burial on haem binding to introduce distal histidine strain and facilitate O(2) binding. For stable oxygen binding without haem oxidation, water is excluded by simple packing of the protein interior and loops that reduce helical-interface mobility. O(2) affinities and exchange timescales match natural globins with distal histidines, with the remarkable exception that O(2) binds tighter than CO.
自然蛋白质工程的原理因自然选择和进化过程中积累的重叠功能和复杂性而变得模糊不清。完全人工合成的蛋白质为定义和测试这些蛋白质工程原理提供了一个全新的平台,同时还能重现和扩展自然功能。在此,我们通过设计一种类似于人类神经球蛋白的氧运输蛋白来介绍这种方法。从一个仅由三种不同氨基酸组成的简单非天然螺旋形成序列开始,我们组装了一个四螺旋束,将组氨酸定位成双组氨酸来连接血红素,并利用血红素结合时的螺旋旋转和谷氨酸埋藏来引入远端组氨酸应变并促进氧气结合。为了在不发生血红素氧化的情况下实现稳定的氧结合,通过简单填充蛋白质内部以及减少螺旋界面流动性的环来排除水分。氧亲和力和交换时间尺度与具有远端组氨酸的天然球蛋白相匹配,但有一个显著的例外,即氧气比一氧化碳结合得更紧密。