Suppr超能文献

H.O.S.T.:基于血红蛋白微泡的氧化应激传感技术。

H.O.S.T.: Hemoglobin microbubble-based Oxidative stress Sensing Technology.

机构信息

Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.

出版信息

Sci Rep. 2023 Sep 11;13(1):14942. doi: 10.1038/s41598-023-42050-z.

Abstract

In this work, we discuss the development of H.O.S.T., a novel hemoglobin microbubble-based electrochemical biosensor for label-free detection of Hydrogen peroxide (HO) towards oxidative stress and cancer diagnostic applications. The novelty of the constructed sensor lies in the use of a sonochemically prepared hemoglobin microbubble capture probe, which allowed for an extended dynamic range, lower detection limit, and enhanced resolution compared to the native hemoglobin based HO biosensors. The size of the prepared particles Hemoglobin microbubbles was characterized using Coulter Counter analysis and was found to be 4.4 microns, and the morphology of these spherical microbubbles was shown using Brightfield microscopy. The binding chemistry of the sensor stack elements of HbMbs' and P.A.N.H.S. crosslinker was characterized using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and UV-Vis Spectroscopy. The electrochemical biosensor calibration (R > 0.95) was done using Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Square Wave Voltammetry. The electrochemical biosensor calibration (R > 0.95) was done using Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Square Wave Voltammetry. The specificity of the sensor for HO was analyzed using cross-reactivity studies using ascorbic acid and glucose as interferents (p < 0.0001 for the highest non-specific dose versus the lowest specific dose). The developed sensor showed good agreement in performance with a commercially available kit for HO detection using Bland Altman Analysis (mean bias = 0.37 for E.I.S. and - 24.26 for CV). The diagnostic potential of the biosensor was further tested in cancerous (N.G.P.) and non-cancerous (H.E.K.) cell lysate for HO detection (p = 0.0064 for E.I.S. and p = 0.0062 for CV). The Michaelis Menten constant calculated from the linear portion of the sensor was found to be [Formula: see text] of 19.44 µM indicating that our biosensor has a higher affinity to Hydrogen peroxide than other available enzymatic sensors, it is attributed to the unique design of the hemoglobin polymers in microbubble.

摘要

在这项工作中,我们讨论了 H.O.S.T. 的开发,这是一种基于血红蛋白微泡的新型电化学生物传感器,用于无标记检测过氧化氢(HO),以实现氧化应激和癌症诊断应用。所构建传感器的新颖之处在于使用了超声化学制备的血红蛋白微泡捕获探针,与基于天然血红蛋白的 HO 生物传感器相比,该探针具有更宽的动态范围、更低的检测限和更高的分辨率。通过库尔特计数器分析对血红蛋白微泡的粒径进行了表征,发现其粒径为 4.4 微米,并通过明场显微镜观察到这些球形微泡的形态。通过衰减全反射傅里叶变换红外光谱和紫外-可见光谱对传感器堆叠元件 HbMbs 和 P.A.N.H.S. 交联剂的结合化学进行了表征。通过电化学阻抗谱、循环伏安法和方波伏安法对电化学生物传感器进行了校准(R>0.95)。通过交叉反应研究使用抗坏血酸和葡萄糖作为干扰物(最高非特异性剂量与最低特异性剂量相比,p<0.0001)对传感器对 HO 的特异性进行了分析。使用 Bland Altman 分析对开发的传感器与市售 HO 检测试剂盒的性能进行了比较(E.I.S. 的平均偏差为 0.37,CV 的偏差为-24.26)。通过电化学阻抗谱和循环伏安法对传感器进行了校准(R>0.95)。通过交叉反应研究使用抗坏血酸和葡萄糖作为干扰物(最高非特异性剂量与最低特异性剂量相比,p<0.0001)对传感器对 HO 的特异性进行了分析。使用 Bland Altman 分析对开发的传感器与市售 HO 检测试剂盒的性能进行了比较(E.I.S. 的平均偏差为 0.37,CV 的偏差为-24.26)。通过电化学阻抗谱和循环伏安法对传感器进行了校准(R>0.95)。通过交叉反应研究使用抗坏血酸和葡萄糖作为干扰物(最高非特异性剂量与最低特异性剂量相比,p<0.0001)对传感器对 HO 的特异性进行了分析。使用 Bland Altman 分析对开发的传感器与市售 HO 检测试剂盒的性能进行了比较(E.I.S. 的平均偏差为 0.37,CV 的偏差为-24.26)。进一步在癌细胞(N.G.P.)和非癌细胞(H.E.K.)裂解物中检测 HO,以测试生物传感器的诊断潜力(E.I.S. 的 p=0.0064,CV 的 p=0.0062)。从传感器线性部分计算得到的米氏常数为[公式:见文本]19.44 µM,表明我们的生物传感器对过氧化氢的亲和力高于其他可用的酶传感器,这归因于血红蛋白聚合物在微泡中的独特设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c87/10495409/cbc2856aa888/41598_2023_42050_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验