Suppr超能文献

用于复发事件间隔时间的条件广义估计方程

Conditional GEE for recurrent event gap times.

作者信息

Clement David Y, Strawderman Robert L

机构信息

Department of Statistical Science, Cornell University, Ithaca, NY 14853-7801, USA.

出版信息

Biostatistics. 2009 Jul;10(3):451-67. doi: 10.1093/biostatistics/kxp004. Epub 2009 Mar 18.

Abstract

This paper deals with the analysis of recurrent event data subject to censored observation. Using a suitable adaptation of generalized estimating equations for longitudinal data, we propose a straightforward methodology for estimating the parameters indexing the conditional means and variances of the process interevent (i.e. gap) times. The proposed methodology permits the use of both time-fixed and time-varying covariates, as well as transformations of the gap times, creating a flexible and useful class of methods for analyzing gap-time data. Censoring is dealt with by imposing a parametric assumption on the censored gap times, and extensive simulation results demonstrate the relative robustness of parameter estimates even when this parametric assumption is incorrect. A suitable large-sample theory is developed. Finally, we use our methods to analyze data from a randomized trial of asthma prevention in young children.

摘要

本文探讨了对存在删失观测的复发事件数据的分析。通过对纵向数据的广义估计方程进行适当调整,我们提出了一种直接的方法来估计索引事件间(即间隔)时间过程的条件均值和方差的参数。所提出的方法允许使用固定时间和随时间变化的协变量,以及间隔时间的变换,从而创建了一类灵活且有用的分析间隔时间数据的方法。通过对删失间隔时间施加参数假设来处理删失问题,大量的模拟结果表明,即使该参数假设不正确,参数估计仍具有相对稳健性。我们还发展了合适的大样本理论。最后,我们使用我们的方法来分析来自一项幼儿哮喘预防随机试验的数据。

相似文献

1
Conditional GEE for recurrent event gap times.
Biostatistics. 2009 Jul;10(3):451-67. doi: 10.1093/biostatistics/kxp004. Epub 2009 Mar 18.
2
Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas.
Biometrics. 2019 Jun;75(2):439-451. doi: 10.1111/biom.13014. Epub 2019 Apr 3.
3
Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring.
Biometrics. 2010 Mar;66(1):39-49. doi: 10.1111/j.1541-0420.2009.01266.x. Epub 2009 May 12.
4
Marginal means/rates models for multiple type recurrent event data.
Lifetime Data Anal. 2004 Jun;10(2):121-38. doi: 10.1023/b:lida.0000030199.23383.45.
5
Maximum likelihood methods for cure rate models with missing covariates.
Biometrics. 2001 Mar;57(1):43-52. doi: 10.1111/j.0006-341x.2001.00043.x.
6
Quantile regression for recurrent gap time data.
Biometrics. 2013 Jun;69(2):375-85. doi: 10.1111/biom.12010. Epub 2013 Mar 11.
7
Penalized generalized estimating equations for high-dimensional longitudinal data analysis.
Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. Epub 2011 Sep 28.
8
Partly conditional survival models for longitudinal data.
Biometrics. 2005 Jun;61(2):379-91. doi: 10.1111/j.1541-0420.2005.00323.x.
9
Semiparametric analysis of panel count data with correlated observation and follow-up times.
Lifetime Data Anal. 2009 Jun;15(2):177-96. doi: 10.1007/s10985-008-9105-1. Epub 2008 Dec 10.

引用本文的文献

2
Methods for Contrasting Gap Time Hazard Functions: Application to Repeat Liver Transplantation.
Stat Biosci. 2017 Dec;9(2):470-488. doi: 10.1007/s12561-016-9168-6. Epub 2016 Sep 26.
3
Semiparametric methods to contrast gap time survival functions: Application to repeat kidney transplantation.
Biometrics. 2016 Jun;72(2):525-34. doi: 10.1111/biom.12427. Epub 2015 Oct 26.
4
Heart failure re-admission: measuring the ever shortening gap between repeat heart failure hospitalizations.
PLoS One. 2014 Sep 11;9(9):e106494. doi: 10.1371/journal.pone.0106494. eCollection 2014.

本文引用的文献

1
Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005 Dec;61(4):962-73. doi: 10.1111/j.1541-0420.2005.00377.x.
2
Dynamic analysis of multivariate failure time data.
Biometrics. 2004 Sep;60(3):764-73. doi: 10.1111/j.0006-341X.2004.00227.x.
3
Estimating marginal effects in accelerated failure time models for serial sojourn times among repeated events.
Lifetime Data Anal. 2004 Jun;10(2):175-90. doi: 10.1023/b:lida.0000030202.20842.c9.
4
Semiparametric regression analysis on longitudinal pattern of recurrent gap times.
Biostatistics. 2004 Apr;5(2):277-90. doi: 10.1093/biostatistics/5.2.277.
5
Marginal regression of gaps between recurrent events.
Lifetime Data Anal. 2003 Sep;9(3):293-303. doi: 10.1023/a:1025892922453.
6
An analysis for menstrual data with time-varying covariates.
Stat Med. 1995 Sep 15;14(17):1843-57. doi: 10.1002/sim.4780141702.
7
Statistical analysis of repeated events forming renewal processes.
Stat Med. 1991 Aug;10(8):1227-40. doi: 10.1002/sim.4780100806.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验