Clement David Y, Strawderman Robert L
Department of Statistical Science, Cornell University, Ithaca, NY 14853-7801, USA.
Biostatistics. 2009 Jul;10(3):451-67. doi: 10.1093/biostatistics/kxp004. Epub 2009 Mar 18.
This paper deals with the analysis of recurrent event data subject to censored observation. Using a suitable adaptation of generalized estimating equations for longitudinal data, we propose a straightforward methodology for estimating the parameters indexing the conditional means and variances of the process interevent (i.e. gap) times. The proposed methodology permits the use of both time-fixed and time-varying covariates, as well as transformations of the gap times, creating a flexible and useful class of methods for analyzing gap-time data. Censoring is dealt with by imposing a parametric assumption on the censored gap times, and extensive simulation results demonstrate the relative robustness of parameter estimates even when this parametric assumption is incorrect. A suitable large-sample theory is developed. Finally, we use our methods to analyze data from a randomized trial of asthma prevention in young children.
本文探讨了对存在删失观测的复发事件数据的分析。通过对纵向数据的广义估计方程进行适当调整,我们提出了一种直接的方法来估计索引事件间(即间隔)时间过程的条件均值和方差的参数。所提出的方法允许使用固定时间和随时间变化的协变量,以及间隔时间的变换,从而创建了一类灵活且有用的分析间隔时间数据的方法。通过对删失间隔时间施加参数假设来处理删失问题,大量的模拟结果表明,即使该参数假设不正确,参数估计仍具有相对稳健性。我们还发展了合适的大样本理论。最后,我们使用我们的方法来分析来自一项幼儿哮喘预防随机试验的数据。