Murphy S A, Bentley G R, O'Hanesian M A
Department of Statistics, Pennsylvania State University, University Park, USA.
Stat Med. 1995 Sep 15;14(17):1843-57. doi: 10.1002/sim.4780141702.
This paper concerns the analysis of menstrual data; in particular, methodology to identify variables that contribute to the variability of menstrual cycles both within and between women. The basis for the proposed methodology is a parameterization of the mean length of a menstrual cycle conditional upon the past cycles and covariates. This approach accommodates the length-bias and censoring commonly found in menstrual data. Data from a longitudinal study of menstrual patterns and other variables among Lese women of the Ituri Forest, Zaire, illustrate the methodology. A small simulation illustrates the bias caused by incorrectly deleting the censored cycles.
本文关注月经数据的分析;特别是识别影响女性个体内和个体间月经周期变异性的变量的方法。所提出方法的基础是根据过去的周期和协变量对月经周期的平均长度进行参数化。这种方法考虑了月经数据中常见的长度偏差和删失情况。来自对扎伊尔伊图里森林的莱塞妇女月经模式及其他变量的纵向研究的数据说明了该方法。一个小型模拟展示了错误删除删失周期所导致的偏差。