Liptak Matthew D, Fleischhacker Angela S, Matthews Rowena G, Telser Joshua, Brunold Thomas C
Department of Chemistry, University of Wisconsin-Madison, Madison Wisconsin 53706, USA.
J Phys Chem B. 2009 Apr 16;113(15):5245-54. doi: 10.1021/jp810136d.
The one-electron-reduced form of vitamin B(12), cob(II)alamin (Co(2+)Cbl), is found in several essential human enzymes, including the cobalamin-dependent methionine synthase (MetH). In this work, experimentally validated electronic structure descriptions for two "base-off" Co(2+)Cbl species have been generated using a combined spectroscopic and computational approach, so as to obtain definitive clues as to how these and related enzymes catalyze the thermodynamically challenging reduction of Co(2+)Cbl to cob(I)alamin (Co(1+)Cbl). Specifically, electron paramagnetic resonance (EPR), electronic absorption (Abs), and magnetic circular dichroism (MCD) spectroscopic techniques have been employed as complementary tools to characterize the two distinct forms of base-off Co(2+)Cbl that can be trapped in the H759G variant of MetH, one containing a five-coordinate and the other containing a four-coordinate, square-planar Co(2+) center. Accurate spin Hamiltonian parameters for these low-spin Co(2+) centers have been determined by collecting EPR data using both X- and Q-band microwave frequencies, and Abs and MCD spectroscopic techniques have been employed to probe the corrin-centered pi --> pi* and Co-based d --> d excitations, respectively. By using these spectroscopic data to evaluate electronic structure calculations, we found that density functional theory provides a reasonable electronic structure description for the five-coordinate form of base-off Co(2+)Cbl. However, it was necessary to resort to a multireference ab initio treatment to generate a more realistic description of the electronic structure of the four-coordinate form. Consistent with this finding, our computational data indicate that, in the five-coordinate Co(2+)Cbl species, the unpaired spin density is primarily localized in the Co 3d(z(2))-based molecular orbital, as expected, whereas in the four-coordinate form, extensive Co 3d orbital mixing, configuration interaction, and spin-orbit coupling cause the unpaired electron to delocalize over several Co 3d orbitals. These results provide important clues to the mechanism of enzymatic Co(2+)Cbl --> Co(1+)Cbl reduction.
维生素B12的单电子还原形式,即钴胺素(II)(Co(2+)Cbl),存在于几种重要的人类酶中,包括钴胺素依赖性蛋氨酸合酶(MetH)。在这项工作中,使用光谱学和计算方法相结合的方式生成了两种“碱基脱离”Co(2+)Cbl物种的经过实验验证的电子结构描述,以便获得关于这些酶以及相关酶如何催化Co(2+)Cbl向钴胺素(I)(Co(1+)Cbl)进行热力学上具有挑战性的还原反应的确切线索。具体而言,电子顺磁共振(EPR)、电子吸收(Abs)和磁圆二色性(MCD)光谱技术已被用作互补工具,以表征可以被困在MetH的H759G变体中的两种不同形式的碱基脱离Co(2+)Cbl,一种含有五配位,另一种含有四配位的平面正方形Co(2+)中心。通过使用X波段和Q波段微波频率收集EPR数据,确定了这些低自旋Co(2+)中心的精确自旋哈密顿参数,并且分别使用Abs和MCD光谱技术来探测以咕啉为中心的π→π*激发和基于Co的d→d激发。通过使用这些光谱数据来评估电子结构计算,我们发现密度泛函理论为碱基脱离Co(2+)Cbl的五配位形式提供了合理的电子结构描述。然而,有必要采用多参考从头算处理来生成对四配位形式电子结构更现实的描述。与这一发现一致,我们的计算数据表明,在五配位Co(2+)Cbl物种中,未成对自旋密度主要定域在基于Co 3d(z(2))的分子轨道中,正如预期的那样,而在四配位形式中,广泛的Co 3d轨道混合、组态相互作用和自旋轨道耦合导致未成对电子在几个Co 3d轨道上离域。这些结果为酶促Co(2+)Cbl→Co(1+)Cbl还原反应的机制提供了重要线索。