Li Guoan, Wang Shaobai, Passias Peter, Xia Qun, Li Gang, Wood Kirkham
Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.
Eur Spine J. 2009 Jul;18(7):1013-21. doi: 10.1007/s00586-009-0936-6. Epub 2009 Mar 20.
Quantitative data on the range of in vivo vertebral motion is critical to enhance our understanding of spinal pathology and to improve the current surgical treatment methods for spinal diseases. Little data have been reported on the range of lumbar vertebral motion during functional body activities. In this study, we measured in vivo 6 degrees-of-freedom (DOF) vertebral motion during unrestricted weightbearing functional body activities using a combined MR and dual fluoroscopic imaging technique. Eight asymptomatic living subjects were recruited and underwent MRI scans in order to create 3D vertebral models from L2 to L5 for each subject. The lumbar spine was then imaged using two fluoroscopes while the subject performed primary flexion-extension, left-right bending, and left-right twisting. The range of vertebral motion during each activity was determined through a previously described imaging-model matching technique at L2-3, L3-4, and L4-5 levels. Our data revealed that the upper vertebrae had a higher range of flexion than the lower vertebrae during flexion-extension of the body (L2-3, 5.4 +/- 3.8 degrees ; L3-4, 4.3 +/- 3.4 degrees ; L4-5, 1.9 +/- 1.1 degrees , respectively). During bending activity, the L4-5 had a higher (but not significant) range of left-right bending motion (4.7 +/- 2.4 degrees ) than both L2-3 (2.9 +/- 2.4 degrees ) and L3-4 (3.4 +/- 2.1 degrees ), while no statistical difference was observed in left-right twisting among the three vertebral levels (L2-3, 2.5 +/- 2.3 degrees ; L3-4, 2.4 +/- 2.6 degrees ; and L4-5, 2.9 +/- 2.1 degrees , respectively). Besides the primary rotations reported, coupled motions were quantified in all DOFs. The coupled translation in left-right and anterior-posterior directions, on average, reached greater than 1 mm, while in the proximal-distal direction this was less than 1 mm. Overall, each vertebral level responds differently to flexion-extension and left-right bending, but similarly to the left-right twisting. This data may provide new insight into the in vivo function of human spines and can be used as baseline data for investigation of pathological spine kinematics.
关于体内椎体运动范围的定量数据对于增进我们对脊柱病理学的理解以及改进当前脊柱疾病的外科治疗方法至关重要。关于功能性身体活动期间腰椎运动范围的报道数据很少。在本研究中,我们使用磁共振成像(MR)和双荧光透视成像技术相结合的方法,测量了无限制负重功能性身体活动期间体内六个自由度(DOF)的椎体运动。招募了八名无症状的活体受试者,并对其进行了磁共振成像扫描,以便为每个受试者创建从L2到L5的三维椎体模型。然后,在受试者进行前屈 - 后伸、左右弯曲和左右扭转时,使用两个荧光透视仪对腰椎进行成像。通过先前描述的成像 - 模型匹配技术,在L2 - 3、L3 - 4和L4 - 5水平确定每个活动期间的椎体运动范围。我们的数据显示,在身体前屈 - 后伸过程中,上位椎体的前屈范围比下位椎体更高(L2 - 3为5.4±3.8度;L3 - 4为4.3±3.4度;L4 - 5分别为1.9±1.1度)。在弯曲活动期间,L4 - 5的左右弯曲运动范围(4.7±2.4度)高于L2 - 3(2.9±2.4度)和L3 - 4(3.4±2.1度)(但无统计学差异),而在三个椎体水平之间的左右扭转中未观察到统计学差异(L2 - 3为2.5±2.3度;L3 - 4为2.4±2.6度;L4 - 5分别为2.9±2.1度)。除了所报告的主要旋转之外,还对所有自由度中的耦合运动进行了量化。左右和前后方向的耦合平移平均超过1毫米,而在近 - 远方向上则小于1毫米。总体而言,每个椎体水平对前屈 - 后伸和左右弯曲的反应不同,但对左右扭转的反应相似。这些数据可能为人类脊柱的体内功能提供新的见解,并可作为研究病理性脊柱运动学的基线数据。