Suppr超能文献

尽管对S6K1和4E-BP1的信号传导受损,但细胞内被刚地弓形虫寄生会刺激哺乳动物雷帕霉素靶蛋白依赖性的宿主细胞生长。

Intracellular parasitism with Toxoplasma gondii stimulates mammalian-target-of-rapamycin-dependent host cell growth despite impaired signalling to S6K1 and 4E-BP1.

作者信息

Wang Yubao, Weiss Louis M, Orlofsky Amos

机构信息

Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Cell Microbiol. 2009 Jun;11(6):983-1000. doi: 10.1111/j.1462-5822.2009.01305.x. Epub 2009 Feb 27.

Abstract

The Ser/Thr kinase mammalian-target-of-rapamycin (mTOR) is a central regulator of anabolism, growth and proliferation. We investigated the effects of Toxoplasma gondii on host mTOR signalling. Toxoplasma invasion of multiple cell types rapidly induced sustained mTOR activation that was restricted to infected cells, as determined by rapamycin-sensitive phosphorylation of ribosomal protein S6; however, phosphorylation of the growth-associated mTOR substrates 4E-BP1 and S6K1 was not detected. Infected cells still phosphorylated S6K1 and 4E-BP1 in response to insulin, although the S6K1 response was blunted. Parasite-induced S6 phosphorylation was independent of S6K1 and did not require activation of canonical mTOR-inducing pathways mediated by phosphatidylinositol 3-kinase-Akt and ERK. Host mTOR was localized in a vesicular pattern surrounding the parasitophorous vacuole, suggesting potential activation by phosphatidic acid in the vacuolar membrane. In spite of a failure to phosphorylate 4E-BP1 and S6K1, intracellular T. gondii triggered host cell cycle progression in an mTOR-dependent manner and progression of infected cells displayed increased sensitivity to rapamycin. Moreover, normal cell growth was maintained during parasite-induced cell cycle progression, as indicated by total cellular S6 levels. The Toxoplasma-infected cell provides a unique example of non-canonical mTOR activation supporting growth that is independent of signalling through either S6K1 or 4E-BP1.

摘要

丝氨酸/苏氨酸激酶哺乳动物雷帕霉素靶蛋白(mTOR)是合成代谢、生长和增殖的核心调节因子。我们研究了刚地弓形虫对宿主mTOR信号传导的影响。通过核糖体蛋白S6的雷帕霉素敏感磷酸化测定,刚地弓形虫对多种细胞类型的侵袭迅速诱导了局限于感染细胞的持续mTOR激活;然而,未检测到生长相关的mTOR底物4E-BP1和S6K1的磷酸化。尽管S6K1反应减弱,但感染细胞仍能响应胰岛素使S6K1和4E-BP1磷酸化。寄生虫诱导的S6磷酸化独立于S6K1,且不需要磷脂酰肌醇3激酶-Akt和ERK介导的经典mTOR诱导途径的激活。宿主mTOR以围绕寄生泡的囊泡模式定位,提示可能被泡膜中的磷脂酸激活。尽管未能使4E-BP1和S6K1磷酸化,但细胞内的刚地弓形虫以mTOR依赖的方式触发宿主细胞周期进程,且感染细胞的进程对雷帕霉素表现出更高的敏感性。此外,如总细胞S6水平所示,在寄生虫诱导的细胞周期进程中维持了正常的细胞生长。刚地弓形虫感染的细胞提供了一个独特的非经典mTOR激活支持生长的例子,该生长独立于通过S6K1或4E-BP1的信号传导。

相似文献

2
Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways.
Oncogene. 2006 Nov 9;25(53):7029-40. doi: 10.1038/sj.onc.1209691. Epub 2006 May 22.
3
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function.
Curr Biol. 2003 May 13;13(10):797-806. doi: 10.1016/s0960-9822(03)00329-4.
4
Determinants of rapamycin sensitivity in breast cancer cells.
Clin Cancer Res. 2004 Feb 1;10(3):1013-23. doi: 10.1158/1078-0432.ccr-03-0043.
6
Identification of a conserved motif required for mTOR signaling.
Curr Biol. 2002 Apr 16;12(8):632-9. doi: 10.1016/s0960-9822(02)00762-5.
7
S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer.
PLoS One. 2011;6(11):e27509. doi: 10.1371/journal.pone.0027509. Epub 2011 Nov 15.

引用本文的文献

3
Ribosomal Protein S6: A Potential Therapeutic Target against Cancer?
Int J Mol Sci. 2021 Dec 21;23(1):48. doi: 10.3390/ijms23010048.
4
The host mTOR pathway and parasitic diseases pathogenesis.
Parasitol Res. 2021 Apr;120(4):1151-1166. doi: 10.1007/s00436-021-07070-6. Epub 2021 Feb 3.
5
() lipid mediated lysosomal rewiring in infected macrophages modulates intracellular trafficking and survival.
J Biol Chem. 2020 Jul 3;295(27):9192-9210. doi: 10.1074/jbc.RA120.012809. Epub 2020 May 18.
7
Effector-triggered immunity and pathogen sensing in metazoans.
Nat Microbiol. 2020 Jan;5(1):14-26. doi: 10.1038/s41564-019-0623-2. Epub 2019 Dec 19.
8
Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.
mSphere. 2019 Jun 5;4(3):e00292-19. doi: 10.1128/mSphere.00292-19.
9
Alterations in Phosphorylation of Hepatocyte Ribosomal Protein S6 Control Plasmodium Liver Stage Infection.
Cell Rep. 2019 Mar 19;26(12):3391-3399.e4. doi: 10.1016/j.celrep.2019.02.085.
10
The Protozoan Parasite Toxoplasma gondii Selectively Reprograms the Host Cell Translatome.
Infect Immun. 2018 Aug 22;86(9). doi: 10.1128/IAI.00244-18. Print 2018 Sep.

本文引用的文献

1
Toxoplasma-induced autophagy: a window into nutritional futile cycles in mammalian cells?
Autophagy. 2009 Apr;5(3):404-6. doi: 10.4161/auto.5.3.7807. Epub 2009 Apr 9.
2
Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth.
J Biol Chem. 2009 Jan 16;284(3):1694-701. doi: 10.1074/jbc.M807890200. Epub 2008 Nov 21.
3
Toxoplasma gondii actively remodels the microtubule network in host cells.
Microbes Infect. 2008 Nov-Dec;10(14-15):1440-9. doi: 10.1016/j.micinf.2008.08.014. Epub 2008 Oct 17.
4
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17414-9. doi: 10.1073/pnas.0809136105. Epub 2008 Oct 27.
5
Amino acid regulation of TOR complex 1.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602. doi: 10.1152/ajpendo.90645.2008. Epub 2008 Sep 2.
6
Phospholipase D1 is an effector of Rheb in the mTOR pathway.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8286-91. doi: 10.1073/pnas.0712268105. Epub 2008 Jun 11.
7
Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins.
Oncogene. 2008 Aug 28;27(37):4998-5010. doi: 10.1038/onc.2008.137. Epub 2008 May 26.
8
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.
Science. 2008 Jun 13;320(5882):1496-501. doi: 10.1126/science.1157535. Epub 2008 May 22.
9
Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34.
Cell Metab. 2008 May;7(5):456-65. doi: 10.1016/j.cmet.2008.03.002.
10
eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy.
J Cell Biol. 2008 Apr 21;181(2):293-307. doi: 10.1083/jcb.200710215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验