Suppr超能文献

后生动物中的效应触发免疫和病原体感应。

Effector-triggered immunity and pathogen sensing in metazoans.

机构信息

Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.

出版信息

Nat Microbiol. 2020 Jan;5(1):14-26. doi: 10.1038/s41564-019-0623-2. Epub 2019 Dec 19.

Abstract

Microbial pathogens possess an arsenal of strategies to invade their hosts, evade immune defences and promote infection. In particular, bacteria use virulence factors, such as secreted toxins and effector proteins, to manipulate host cellular processes and establish a replicative niche. Survival of eukaryotic organisms in the face of such challenge requires host mechanisms to detect and counteract these pathogen-specific virulence strategies. In this Review, we focus on effector-triggered immunity (ETI) in metazoan organisms as a mechanism for pathogen sensing and distinguishing pathogenic from non-pathogenic microorganisms. For the purposes of this Review, we adopt the concept of ETI formulated originally in the context of plant pathogens and their hosts, wherein specific host proteins 'guard' central cellular processes and trigger inflammatory responses following pathogen-driven disruption of these processes. While molecular mechanisms of ETI are well-described in plants, our understanding of functionally analogous mechanisms in metazoans is still emerging. In this Review, we present an overview of ETI in metazoans and discuss recently described cellular processes that are guarded by the host. Although all pathogens manipulate host pathways, we focus primarily on bacterial pathogens and highlight pathways of effector-triggered immune defence that sense disruption of core cellular processes by pathogens. Finally, we discuss recent developments in our understanding of how pathogens can evade ETI to overcome these host adaptations.

摘要

微生物病原体拥有一系列策略来入侵宿主、逃避免疫防御并促进感染。特别是,细菌利用毒力因子,如分泌的毒素和效应蛋白,来操纵宿主细胞过程并建立复制生态位。真核生物在面对这种挑战时的生存需要宿主机制来检测和对抗这些特定于病原体的毒力策略。在这篇综述中,我们专注于后生动物生物体中的效应触发免疫 (ETI),将其作为一种用于病原体检测和区分致病性和非致病性微生物的机制。为了本综述的目的,我们采用了最初在植物病原体及其宿主背景下提出的 ETI 概念,其中特定的宿主蛋白“保护”核心细胞过程,并在这些过程被病原体驱动破坏后引发炎症反应。虽然 ETI 的分子机制在植物中已有很好的描述,但我们对后生动物中功能类似机制的理解仍在不断发展。在这篇综述中,我们概述了后生动物中的 ETI,并讨论了最近描述的宿主保护的细胞过程。尽管所有病原体都操纵宿主途径,但我们主要关注细菌病原体,并强调了感知病原体破坏核心细胞过程的效应触发免疫防御途径。最后,我们讨论了我们对病原体如何逃避 ETI 以克服这些宿主适应的理解的最新进展。

相似文献

1
Effector-triggered immunity and pathogen sensing in metazoans.
Nat Microbiol. 2020 Jan;5(1):14-26. doi: 10.1038/s41564-019-0623-2. Epub 2019 Dec 19.
2
Effector triggered immunity.
Virulence. 2014;5(7):697-702. doi: 10.4161/viru.29091.
3
RhoGTPases and inflammasomes: Guardians of effector-triggered immunity.
PLoS Pathog. 2021 Apr 29;17(4):e1009504. doi: 10.1371/journal.ppat.1009504. eCollection 2021 Apr.
4
Strategies of bacterial detection by inflammasomes.
Cell Chem Biol. 2024 May 16;31(5):835-850. doi: 10.1016/j.chembiol.2024.03.009. Epub 2024 Apr 17.
5
Effector-Triggered Immunity.
Annu Rev Immunol. 2023 Apr 26;41:453-481. doi: 10.1146/annurev-immunol-101721-031732. Epub 2023 Feb 7.
6
Effector-triggered versus pattern-triggered immunity: how animals sense pathogens.
Nat Rev Immunol. 2013 Mar;13(3):199-206. doi: 10.1038/nri3398. Epub 2013 Feb 15.
7
Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors.
Curr Opin Microbiol. 2015 Feb;23:14-22. doi: 10.1016/j.mib.2014.10.009. Epub 2014 Nov 13.
8
Targeting of immune signalling networks by bacterial pathogens.
Nat Cell Biol. 2009 May;11(5):521-6. doi: 10.1038/ncb0509-521.
9
Bacterial manipulation of innate immunity to promote infection.
Nat Rev Microbiol. 2010 Feb;8(2):117-28. doi: 10.1038/nrmicro2295.
10
Mechanisms of Effector-Mediated Immunity Revealed by the Accidental Human Pathogen .
Front Cell Infect Microbiol. 2021 Feb 3;10:593823. doi: 10.3389/fcimb.2020.593823. eCollection 2020.

引用本文的文献

1
Biological and clinical implications of a model of surveillance immunity.
J Clin Invest. 2025 Aug 1;135(15). doi: 10.1172/JCI191645.
4
The interplay between host immunity and infection.
mBio. 2025 Aug 13;16(8):e0356224. doi: 10.1128/mbio.03562-24. Epub 2025 Jul 1.
7
Defining neuronal responses to the neurotropic parasite .
mSphere. 2025 Jun 25;10(6):e0021625. doi: 10.1128/msphere.00216-25. Epub 2025 May 30.
8
Patterns of pathogenesis in innate immunity: insights from C. elegans.
Nat Rev Immunol. 2025 Apr 17. doi: 10.1038/s41577-025-01167-0.
9
Guards and decoys: RIPoptosome and inflammasome pathway regulators of bacterial effector-triggered immunity.
PLoS Pathog. 2025 Jan 30;21(1):e1012884. doi: 10.1371/journal.ppat.1012884. eCollection 2025 Jan.

本文引用的文献

1
Inflammasomes: Threat-Assessment Organelles of the Innate Immune System.
Immunity. 2019 Oct 15;51(4):609-624. doi: 10.1016/j.immuni.2019.08.005. Epub 2019 Aug 28.
3
Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes.
Science. 2019 Apr 5;364(6435). doi: 10.1126/science.aau1330. Epub 2019 Mar 14.
5
PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation.
Nature. 2018 Dec;564(7734):71-76. doi: 10.1038/s41586-018-0761-3. Epub 2018 Nov 28.
6
Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during infection.
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10888-E10897. doi: 10.1073/pnas.1809548115. Epub 2018 Oct 31.
7
Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death.
Science. 2018 Nov 30;362(6418):1064-1069. doi: 10.1126/science.aau2818. Epub 2018 Oct 25.
8
Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors.
Nat Microbiol. 2018 Oct;3(10):1122-1130. doi: 10.1038/s41564-018-0246-z. Epub 2018 Sep 17.
9
Identification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin.
Nat Commun. 2018 Aug 30;9(1):3524. doi: 10.1038/s41467-018-05850-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验