Suppr超能文献

Zic1水平调节腹侧脑干中苔藓纤维神经元的位置和轴突侧向性选择。

Zic1 levels regulate mossy fiber neuron position and axon laterality choice in the ventral brain stem.

作者信息

Dipietrantonio H J, Dymecki S M

机构信息

Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

出版信息

Neuroscience. 2009 Sep 1;162(3):560-73. doi: 10.1016/j.neuroscience.2009.02.082. Epub 2009 Mar 19.

Abstract

Pontine gray neurons of the brain stem are a major source of mossy fiber (MF) afferents to granule cells of the cerebellum. Achieving this connectivity involves an early regionalization of pontine gray neuron cell bodies within the brainstem pontine nuclei, as well as establishing the proper ratio of crossed versus uncrossed MF projections to contralateral versus ipsilateral cerebellar territories. Here, we report expression of the transcription factor Zic1 in newly postmitotic pontine gray neurons and present functional experiments in embryonic and postnatal mice that implicate Zic1 levels as a key determinant of pontine neuron cell body position within the pons and axon laterality. Reducing Zic1 levels embryonically via in utero electroporation of short hairpin RNA interference (shRNAi) vectors shifted the postnatal distribution of pontine neurons from caudolateral to rostromedial territories; by contrast, increasing Zic1 levels resulted in the reciprocal shift, with electroporated cells redistributing caudolaterally. Associated with the latter was a change in axon laterality, with a greater proportion of marked projections now targeting the ipsilateral instead of contralateral cerebellum. Zic1 levels in pontine gray neurons, therefore, play an important role in the development of pontocerebellar circuitry.

摘要

脑干的脑桥灰质神经元是小脑颗粒细胞苔藓纤维(MF)传入纤维的主要来源。实现这种连接涉及脑干脑桥核内脑桥灰质神经元细胞体的早期区域化,以及建立交叉与未交叉的MF投射到对侧与同侧小脑区域的适当比例。在这里,我们报告转录因子Zic1在新有丝分裂后的脑桥灰质神经元中的表达,并在胚胎和出生后小鼠中进行功能实验,这些实验表明Zic1水平是脑桥神经元细胞体在脑桥内位置和轴突侧性的关键决定因素。通过子宫内电穿孔短发夹RNA干扰(shRNAi)载体在胚胎期降低Zic1水平,可使出生后脑桥神经元的分布从尾外侧转移到吻内侧区域;相反,增加Zic1水平会导致相反的转移,电穿孔细胞重新分布到尾外侧。与后者相关的是轴突侧性的改变,现在有更大比例的标记投射靶向同侧而非对侧小脑。因此,脑桥灰质神经元中的Zic1水平在脑桥小脑回路的发育中起重要作用。

相似文献

1
Zic1 levels regulate mossy fiber neuron position and axon laterality choice in the ventral brain stem.
Neuroscience. 2009 Sep 1;162(3):560-73. doi: 10.1016/j.neuroscience.2009.02.082. Epub 2009 Mar 19.
2
Cerebellar target neurons provide a stop signal for afferent neurite extension in vitro.
J Neurosci. 1992 Feb;12(2):619-34. doi: 10.1523/JNEUROSCI.12-02-00619.1992.
6
Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus.
J Neurophysiol. 1992 Mar;67(3):547-60. doi: 10.1152/jn.1992.67.3.547.
8
Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories.
J Comp Neurol. 2016 Apr 15;524(6):1270-91. doi: 10.1002/cne.23904. Epub 2015 Oct 10.
9
Laterality of the pontocerebellar projections in the rat.
Eur J Neurosci. 2002 May;15(9):1551-6. doi: 10.1046/j.1460-9568.2002.01993.x.
10
Zic2 controls cerebellar development in cooperation with Zic1.
J Neurosci. 2002 Jan 1;22(1):218-25. doi: 10.1523/JNEUROSCI.22-01-00218.2002.

引用本文的文献

2
To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly.
Front Neurosci. 2022 Apr 28;16:889155. doi: 10.3389/fnins.2022.889155. eCollection 2022.
3
Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain.
Front Neuroanat. 2021 Dec 24;15:793161. doi: 10.3389/fnana.2021.793161. eCollection 2021.
4
Stalled developmental programs at the root of pediatric brain tumors.
Nat Genet. 2019 Dec;51(12):1702-1713. doi: 10.1038/s41588-019-0531-7. Epub 2019 Nov 25.
5
Emerging connections between cerebellar development, behaviour and complex brain disorders.
Nat Rev Neurosci. 2019 May;20(5):298-313. doi: 10.1038/s41583-019-0152-2.
6
Conditional Loss of Function Early after Birth Impacts on Expression of Genes with Synaptic Function.
Front Mol Neurosci. 2017 Nov 15;10:369. doi: 10.3389/fnmol.2017.00369. eCollection 2017.
7
The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry.
Front Neural Circuits. 2017 May 17;11:33. doi: 10.3389/fncir.2017.00033. eCollection 2017.
8
Deregulated proliferation and differentiation in brain tumors.
Cell Tissue Res. 2015 Jan;359(1):225-54. doi: 10.1007/s00441-014-2046-y. Epub 2014 Nov 23.
10
Axonal patterns and targets of dA1 interneurons in the chick hindbrain.
J Neurosci. 2012 Apr 25;32(17):5757-71. doi: 10.1523/JNEUROSCI.4231-11.2012.

本文引用的文献

1
Control of precerebellar neuron development by Olig3 bHLH transcription factor.
J Neurosci. 2008 Oct 1;28(40):10124-33. doi: 10.1523/JNEUROSCI.3769-08.2008.
3
Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling.
PLoS Biol. 2008 Jun 10;6(6):e142. doi: 10.1371/journal.pbio.0060142.
5
Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms.
Development. 2008 May;135(10):1833-41. doi: 10.1242/dev.020693. Epub 2008 Apr 16.
6
The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15382-7. doi: 10.1073/pnas.0707456104. Epub 2007 Sep 18.
7
Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin.
Oncogene. 2007 Jul 5;26(31):4489-98. doi: 10.1038/sj.onc.1210241. Epub 2007 Feb 5.
10
Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain.
Development. 2006 May;133(10):1923-31. doi: 10.1242/dev.02354. Epub 2006 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验