Suppr超能文献

使用可变字符串长度多目标遗传算法在微阵列数据中寻找多个相干双聚类

Finding multiple coherent biclusters in microarray data using variable string length multiobjective genetic algorithm.

作者信息

Maulik Ujjwal, Mukhopadhyay Anirban, Bandyopadhyay Sanghamitra

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India.

出版信息

IEEE Trans Inf Technol Biomed. 2009 Nov;13(6):969-75. doi: 10.1109/TITB.2009.2017527. Epub 2009 Mar 16.

Abstract

Microarray technology enables the simultaneous monitoring of the expression pattern of a huge number of genes across different experimental conditions. Biclustering in microarray data is an important technique that discovers a group of genes that are coregulated in a subset of conditions. Biclustering algorithms require to identify coherent and nontrivial biclusters, i.e., the biclusters should have low mean squared residue and high row variance. A multiobjective genetic biclustering technique is proposed here that optimizes these objectives simultaneously. A novel encoding scheme that uses variable chromosome length is developed. Moreover, a new quantitative measure to evaluate the goodness of the biclusters is proposed. The performance of the proposed algorithm has been evaluated on both simulated and real-life gene expression datasets, and compared with some other well-known biclustering techniques.

摘要

微阵列技术能够在不同实验条件下同时监测大量基因的表达模式。微阵列数据中的双聚类是一种重要技术,可发现一组在部分条件下共调控的基因。双聚类算法需要识别连贯且有意义的双聚类,即双聚类应具有低均方残差和高行方差。本文提出了一种多目标遗传双聚类技术,可同时优化这些目标。开发了一种使用可变染色体长度的新颖编码方案。此外,还提出了一种评估双聚类质量的新定量方法。所提算法的性能已在模拟和实际基因表达数据集上进行了评估,并与其他一些著名的双聚类技术进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验