Zhao Hongya, Liew Alan Wee-Chung, Xie Xudong, Yan Hong
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.
J Theor Biol. 2008 Mar 21;251(2):264-74. doi: 10.1016/j.jtbi.2007.11.030. Epub 2007 Dec 4.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.
双聚类是微阵列分析中的一种重要工具,当只有一部分基因在一部分条件下共同调控时。与标准聚类分析不同,双聚类在微阵列数据矩阵中同时在基因和条件方向上进行分类。然而,双聚类问题本质上是难以处理的且计算复杂。在本文中,我们基于相干基因表达谱的几何观点提出了一种新的双聚类算法。在这种方法中,我们在列对空间中基于霍夫变换进行模式识别。该算法特别适用于大规模微阵列数据的双聚类分析。我们的研究表明,该方法能够在噪声水平增加和调控复杂性增加的情况下发现显著的双聚类。此外,我们还测试了我们的方法在一组注释基因中定位生物学上可验证的双聚类的能力。