Rice Louis B, Carias Lenore L, Rudin Susan, Hutton Rebecca, Marshall Steven, Hassan Medhat, Josseaume Nathalie, Dubost Lionel, Marie Arul, Arthur Michel
Medical Service 111(W), Louis Stokes Cleveland VA Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
J Bacteriol. 2009 Jun;191(11):3649-56. doi: 10.1128/JB.01834-08. Epub 2009 Mar 20.
Peptidoglycan is polymerized by monofunctional d,d-transpeptidases belonging to class B penicillin-binding proteins (PBPs) and monofunctional glycosyltransferases and by bifunctional enzymes that combine both activities (class A PBPs). Three genes encoding putative class A PBPs (pbpF, pbpZ, and ponA) were deleted from the chromosome of Enterococcus faecium D344R in all possible combinations in order to identify the glycosyltransferases that cooperate with low-affinity class B Pbp5 for synthesis of peptidoglycan in the presence of beta-lactam antibiotics. The viability of the triple mutant indicated that glycan strands can be polymerized independently from class A PBPs by an unknown glycosyltranferase. The susceptibility of the DeltapbpF DeltaponA mutant and triple mutants to extended spectrum cephalosporins (ceftriaxone and cefepime) identified either PbpF or PonA as essential partners of Pbp5 for peptidoglycan polymerization in the presence of the drugs. Mass spectrometry analysis of peptidoglycan structure showed that loss of PonA and PbpF activity led to a minor decrease in the extent of peptidoglycan cross-linking by the remaining PBPs without any detectable compensatory increase in the participation of the L,D-transpeptidase in peptidoglycan synthesis. Optical density measurements and electron microscopy analyses showed that the DeltapbpF DeltaponA mutant underwent increased stationary-phase autolysis compared to the parental strain. Unexpectedly, deletion of the class A pbp genes revealed dissociation between the expression of resistance to cephalosporins and penicillins, although the production of Pbp5 was required for resistance to both classes of drugs. Thus, susceptibility of Pbp5-mediated peptidoglycan cross-linking to different beta-lactam antibiotics differed as a function of its partner glycosyltransferase.
肽聚糖由属于B类青霉素结合蛋白(PBPs)的单功能d,d-转肽酶、单功能糖基转移酶以及兼具两种活性的双功能酶(A类PBPs)聚合而成。为了鉴定在β-内酰胺抗生素存在的情况下与低亲和力B类Pbp5协同合成肽聚糖的糖基转移酶,从粪肠球菌D344R的染色体上以所有可能的组合方式缺失了三个编码假定A类PBPs的基因(pbpF、pbpZ和ponA)。三重突变体的生存能力表明,聚糖链可以由一种未知的糖基转移酶独立于A类PBPs进行聚合。DeltapbpF DeltaponA突变体和三重突变体对广谱头孢菌素(头孢曲松和头孢吡肟)的敏感性表明,在药物存在的情况下,PbpF或PonA是Pbp5进行肽聚糖聚合的必需伙伴。肽聚糖结构的质谱分析表明,PonA和PbpF活性的丧失导致剩余PBPs进行肽聚糖交联的程度略有下降,而L,D-转肽酶参与肽聚糖合成的过程中没有任何可检测到的补偿性增加。光密度测量和电子显微镜分析表明,与亲本菌株相比,DeltapbpF DeltaponA突变体在稳定期的自溶增加。出乎意料的是,A类pbp基因的缺失揭示了对头孢菌素和青霉素的耐药性表达之间的解离,尽管对这两类药物的耐药性都需要Pbp5的产生。因此,Pbp5介导的肽聚糖交联对不同β-内酰胺抗生素的敏感性因其伙伴糖基转移酶的不同而有所差异。