Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA.
Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA.
mBio. 2024 May 8;15(5):e0017024. doi: 10.1128/mbio.00170-24. Epub 2024 Apr 2.
Penicillin-binding protein 5 (PBP5) of () is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; complementation restored parental AMP MICs. Using D344SRF (lacking ), constructs with (from a clade A1 strain) cloned upstream of and alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (64 µg/mL) were seen using from A1 strains. Next, using from clade B and clade A/B and B/A hybrid constructs, the presence of , even alone or in , resulted in much lower AMP MICs (3-8 µg/mL) than when was present (MICs 64 µg/mL). qRT PCR showed relatively greater expression ( = 0.007) with cloned downstream of clade A1 (MIC 128 µg/mL) vs when cloned downstream of clade B (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B on AMP MICs as well as the impact of alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in our results showed that the presence of resulted in a major decrease in AMP MICs.
The findings of this study shed light on ampicillin resistance in clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B strains exhibit lower AMP MICs when both alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in and . These changes in may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant , thus potentially resorting ampicillin to our therapeutic armamentarium for this species.
()青霉素结合蛋白 5(PBP5)对氨苄青霉素耐药性(AMP-R)至关重要。我们之前指定了三种形式的 PBP5,即 B 群菌株中的 PBP5-S(氨苄青霉素敏感(AMP-S))、PBP5-S/R(AMP-S 或 R)和 A 群菌株中的 PBP5-R(AMP-R)。在这里,缺失导致 AMP 最小抑菌浓度(MIC)显著降低,B 群菌株为 0.01-0.09 µg/mL,A 群菌株为 0.12-0.19 µg/mL;而互补则恢复了亲本 AMP MICs。使用缺乏 D344SRF()的构建体,将 A 群菌株中的 (来自 A1 群菌株)克隆在上游,和 等位基因导致 MIC 适度增加至 3-8 µg/mL,而使用 A1 群菌株中的 则导致高 MIC(64 µg/mL)。接下来,使用 B 群和 A/B 群和 B/A 群杂交构建体中的 ,即使单独存在或存在 ,也会导致 AMP MIC 降低得多(3-8 µg/mL),而存在 时则为 64 µg/mL)。qRT-PCR 显示,与克隆在 A1 群 下游(MIC 128 µg/mL)相比, 下游克隆的 表达相对较高(= 0.007)(MIC 4-16 µg/mL),与 Western blot 结果一致。总之,我们报告了 A 群与 B 群 对 AMP MIC 的影响,以及来自不同群的 等位基因的影响。尽管以前认为 Psr 不会导致 在我们的研究结果表明,的存在导致 AMP MIC 大大降低。
本研究结果阐明了 A 群菌株中氨苄青霉素耐药性的机制。它们强调了青霉素结合蛋白 5(PBP5)的氨基酸序列改变以及 psr 区在 PBP5 表达和氨苄青霉素耐药性中的关键作用。值得注意的是,全长 psrB 的存在导致 PBP5 表达降低,并且与存在较短的 psrA 相比,氨苄青霉素的最低抑菌浓度(MIC)降低,而与涉及的 pbp5 等位基因无关。此外,当 A 群和 B 群的两个 等位基因都存在时,B 群菌株的 AMP MIC 较低,尽管需要考虑 A 群和 B 群菌株之间可能导致这种影响的其他区别。有趣的是,A 群和 B 群 之间的差异以及随后在医院相关菌株中 AMP MIC 升高的进化似乎与 和 的变化同时发生。这些 中的变化可能导致 Psr 失活,从而促进 PBP5 表达增加和氨苄青霉素耐药性增强。这些结果表明,如果可以设计出 PsrB 的模拟物,它可能能够降低耐氨苄青霉素的 的 MIC 值,从而使氨苄青霉素有可能成为我们治疗该物种的治疗武器。