Suppr超能文献

铜绿假单胞菌低分子量青霉素结合蛋白在AmpC表达、β-内酰胺耐药性及肽聚糖结构中的作用

Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.

作者信息

Ropy Alaa, Cabot Gabriel, Sánchez-Diener Irina, Aguilera Cristian, Moya Bartolome, Ayala Juan A, Oliver Antonio

机构信息

Centro de Biología Molecular Severo Ochoa, Madrid, Spain.

Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain.

出版信息

Antimicrob Agents Chemother. 2015 Jul;59(7):3925-34. doi: 10.1128/AAC.05150-14. Epub 2015 Apr 20.

Abstract

This study aimed to characterize the role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins (LMM PBPs), namely, PBP4 (DacB), PBP5 (DacC), and PBP7 (PbpG), in peptidoglycan composition, β-lactam resistance, and ampC regulation. For this purpose, we constructed all single and multiple mutants of dacB, dacC, pbpG, and ampC from the wild-type P. aeruginosa PAO1 strain. Peptidoglycan composition was determined by high-performance liquid chromatography (HPLC), ampC expression by reverse transcription-PCR (RT-PCR), PBP patterns by a Bocillin FL-binding test, and antimicrobial susceptibility by MIC testing for a panel of β-lactams. Microscopy and growth rate analyses revealed no apparent major morphological changes for any of the mutants compared to the wild-type PAO1 strain. Of the single mutants, only dacC mutation led to significantly increased pentapeptide levels, showing that PBP5 is the major dd-carboxypeptidase in P. aeruginosa. Moreover, our results indicate that PBP4 and PBP7 play a significant role as dd-carboxypeptidase only if PBP5 is absent, and their dd-endopeptidase activity is also inferred. As expected, the inactivation of PBP4 led to a significant increase in ampC expression (around 50-fold), but, remarkably, the sequential inactivation of the three LMM PBPs produced a much greater increase (1,000-fold), which correlated with peptidoglycan pentapeptide levels. Finally, the β-lactam susceptibility profiles of the LMM PBP mutants correlated well with the ampC expression data. However, the inactivation of ampC in these mutants also evidenced a role of LMM PBPs, especially PBP5, in intrinsic β-lactam resistance. In summary, in addition to assessing the effect of P. aeruginosa LMM PBPs on peptidoglycan structure for the first time, we obtained results that represent a step forward in understanding the impact of these PBPs on β-lactam resistance, apparently driven by the interplay between their roles in AmpC induction, β-lactam trapping, and dd-carboxypeptidase/β-lactamase activity.

摘要

本研究旨在阐明铜绿假单胞菌低分子量青霉素结合蛋白(LMM PBPs),即PBP4(DacB)、PBP5(DacC)和PBP7(PbpG)在肽聚糖组成、β-内酰胺抗性及ampC调控中的作用。为此,我们构建了铜绿假单胞菌PAO1野生型菌株中dacB、dacC、pbpG和ampC的所有单突变体和多突变体。通过高效液相色谱(HPLC)测定肽聚糖组成,通过逆转录聚合酶链反应(RT-PCR)测定ampC表达,通过Bocillin FL结合试验测定PBP模式,并通过对一组β-内酰胺进行MIC测试来测定抗菌敏感性。显微镜检查和生长速率分析显示,与野生型PAO1菌株相比,任何突变体均未出现明显的主要形态变化。在单突变体中,只有dacC突变导致五肽水平显著增加,表明PBP5是铜绿假单胞菌中的主要双功能羧肽酶。此外,我们的结果表明,只有在PBP5缺失时,PBP4和PBP7才作为双功能羧肽酶发挥重要作用,并且还推断出它们的双功能内肽酶活性。正如预期的那样,PBP4的失活导致ampC表达显著增加(约50倍),但值得注意的是,三种LMM PBPs的顺序失活导致更大幅度的增加(1000倍),这与肽聚糖五肽水平相关。最后,LMM PBP突变体的β-内酰胺敏感性谱与ampC表达数据密切相关。然而,这些突变体中ampC的失活也证明了LMM PBPs,尤其是PBP5,在固有β-内酰胺抗性中的作用。总之,除了首次评估铜绿假单胞菌LMM PBPs对肽聚糖结构的影响外,我们还取得了一些成果,在理解这些PBPs对β-内酰胺抗性的影响方面向前迈进了一步,这显然是由它们在AmpC诱导、β-内酰胺捕获以及双功能羧肽酶/β-内酰胺酶活性中的相互作用所驱动的。

相似文献

3
Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2013 Jul;57(7):3078-84. doi: 10.1128/AAC.00268-13. Epub 2013 Apr 22.
5
Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.
Antimicrob Agents Chemother. 2001 Jul;45(7):1964-71. doi: 10.1128/AAC.45.7.1964-1971.2001.
8
Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.
Antimicrob Agents Chemother. 2015 Dec;59(12):7753-61. doi: 10.1128/AAC.01729-15. Epub 2015 Oct 5.
9
NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2010 Sep;54(9):3557-63. doi: 10.1128/AAC.00385-10. Epub 2010 Jun 21.
10
Role of Low-Molecular-Mass Penicillin-Binding Proteins, NagZ and AmpR in AmpC β-lactamase Regulation of .
Front Cell Infect Microbiol. 2017 Sep 27;7:425. doi: 10.3389/fcimb.2017.00425. eCollection 2017.

引用本文的文献

1
Rapid prediction of carbapenemases in by imipenem/relebactam and MALDI-TOF MS.
J Clin Microbiol. 2025 May 14;63(5):e0110524. doi: 10.1128/jcm.01105-24. Epub 2025 Mar 25.
2
Perturbation of peptidoglycan recycling by anti-folates and design of a dual-action inhibitor.
mBio. 2025 Mar 12;16(3):e0298424. doi: 10.1128/mbio.02984-24. Epub 2025 Jan 29.
3
Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens.
Antibiotics (Basel). 2025 Jan 9;14(1):63. doi: 10.3390/antibiotics14010063.
6
Not all carbapenem-resistant Pseudomonas aeruginosa strains are alike: tailoring antibiotic therapy based on resistance mechanisms.
Curr Opin Infect Dis. 2024 Dec 1;37(6):594-601. doi: 10.1097/QCO.0000000000001044. Epub 2024 Sep 18.
9
Antimicrobial resistance of : navigating clinical impacts, current resistance trends, and innovations in breaking therapies.
Front Microbiol. 2024 Apr 5;15:1374466. doi: 10.3389/fmicb.2024.1374466. eCollection 2024.
10
Resistance in : A Narrative Review of Antibiogram Interpretation and Emerging Treatments.
Antibiotics (Basel). 2023 Nov 12;12(11):1621. doi: 10.3390/antibiotics12111621.

本文引用的文献

3
Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1.
Antimicrob Agents Chemother. 2013 Dec;57(12):5987-93. doi: 10.1128/AAC.01291-13. Epub 2013 Sep 16.
5
Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria.
Front Microbiol. 2013 May 22;4:128. doi: 10.3389/fmicb.2013.00128. eCollection 2013.
6
Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance.
Antimicrob Agents Chemother. 2013 Jul;57(7):3137-46. doi: 10.1128/AAC.00505-13. Epub 2013 Apr 29.
7
Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2013 Jul;57(7):3078-84. doi: 10.1128/AAC.00268-13. Epub 2013 Apr 22.
8
Bacterial cell-wall recycling.
Ann N Y Acad Sci. 2013 Jan;1277(1):54-75. doi: 10.1111/j.1749-6632.2012.06813.x. Epub 2012 Nov 16.
9
Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones.
Antimicrob Agents Chemother. 2012 Dec;56(12):6349-57. doi: 10.1128/AAC.01388-12. Epub 2012 Oct 8.
10
From the regulation of peptidoglycan synthesis to bacterial growth and morphology.
Nat Rev Microbiol. 2011 Dec 28;10(2):123-36. doi: 10.1038/nrmicro2677.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验