Lesjak Sonja, Weygand-Durasevic Ivana
Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia.
FEMS Microbiol Lett. 2009 May;294(1):111-8. doi: 10.1111/j.1574-6968.2009.01560.x. Epub 2008 Mar 20.
Two dissimilar seryl-tRNA synthetases (SerRSs) exist in Methanosarcina barkeri: one of bacterial type (bMbSerRS) and the other resembling SerRSs present only in methanogenic archaea (mMbSerRS). While the expression of the archaeal bMbSerRS gene in Escherichia coli complements the function of thermolabile SerRS at a nonpermissive temperature, mMbSerRS does not. Our recent X-ray structural analysis of mMbSerRS revealed an idiosyncratic N-terminal domain and a catalytic zinc ion in the active site, identifying methanogenic-type SerRSs as atypical members of the SerRS family. To shed further light on substrate discrimination by methanogenic-type SerRS, we developed an in vivo system in E. coli to study tRNA serylation by mMbSerRS variants. We show that coexpression of the M. barkeri SerRS gene, encoding either bacterial- or methanogenic-type SerRS, with the gene for cognate archaeal suppressor tRNA leads to suppression of bacterial amber mutations, implying that the E. coli translation machinery can use serylated tRNA from methanogenic archaea as a substrate in protein synthesis. Furthermore, because serylation of M. barkeri serine-specific tRNA by endogenous E. coli SerRS is negligible, suppression is entirely dependent on recognition between archaeal partners (mMbSerRS/suppressor tRNA(Ser)). Thus, the efficiency of suppression by mMbSerRS variants quantified in the described beta-galactosidase-based reporter system, accurately reflects enzymes' serylation propensity obtained by in vitro kinetic measurements.
巴氏甲烷八叠球菌中存在两种不同的丝氨酰 - tRNA合成酶(SerRSs):一种是细菌型(bMbSerRS),另一种类似于仅存在于产甲烷古菌中的SerRSs(mMbSerRS)。虽然在大肠杆菌中表达古菌bMbSerRS基因可在非允许温度下补充热不稳定SerRS的功能,但mMbSerRS却不能。我们最近对mMbSerRS的X射线结构分析揭示了一个独特的N端结构域和活性位点中的催化锌离子,将产甲烷型SerRSs鉴定为SerRS家族的非典型成员。为了进一步阐明产甲烷型SerRS对底物的识别机制,我们在大肠杆菌中开发了一个体内系统来研究mMbSerRS变体对tRNA的丝氨酰化作用。我们发现,将编码细菌型或产甲烷型SerRS的巴氏甲烷八叠球菌SerRS基因与同源古菌抑制性tRNA基因共表达,可导致细菌琥珀突变的抑制,这意味着大肠杆菌翻译机制可以将来自产甲烷古菌的丝氨酰化tRNA用作蛋白质合成的底物。此外,由于内源性大肠杆菌SerRS对巴氏甲烷八叠球菌丝氨酸特异性tRNA的丝氨酰化作用可忽略不计,因此抑制作用完全依赖于古菌伙伴(mMbSerRS/抑制性tRNA(Ser))之间的识别。因此,在所描述的基于β - 半乳糖苷酶的报告系统中量化的mMbSerRS变体的抑制效率,准确反映了通过体外动力学测量获得的酶的丝氨酰化倾向。