Wang Nick X, Zheng Jie J
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA.
Protein Sci. 2009 Apr;18(4):707-15. doi: 10.1002/pro.77.
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug-resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA-drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug-resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non-drug-resistant mutation, E119G. Six-nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA-oseltamivir complexes containing either NA wild-type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant.
甲型流感病毒(H5N1)是全球最大的大流行威胁之一。神经氨酸酶(NA)抑制剂,如奥司他韦和扎那米韦,可预防流感传播,但耐药病毒降低了它们的有效性。耐药性取决于NA-药物复合物的结合特性。NA糖蛋白活性位点内的关键残基突变会减少结合,从而导致耐药性。我们进行了分子模拟和计算,以表征H5N1流感病毒对奥司他韦的耐药机制,并预测潜在的耐药突变。我们研究了两个耐药NA突变,H274Y和N294S,以及一个非耐药突变,E119G。使用含有NA野生型H5N1病毒或变体的NA-奥司他韦复合物进行了六纳秒的显式溶剂无约束分子动力学模拟。然后使用MM_PBSA技术对这些复合物的结合自由能进行排序。详细分析表明,NA口袋1区域中E276的构象变化是H274Y突变体而非N294S突变体耐药性的关键来源。