UQ Centre for Clinical Research and Perinatal Research Centre, Royal Brisbane and Womens Hospital, The University of Queensland, Building 71/918 Herston, Brisbane, QLD 4029, Australia.
Neurochem Res. 2009 Oct;34(10):1748-57. doi: 10.1007/s11064-009-9957-0. Epub 2009 Mar 25.
Anomalies in glutamate homeostasis may contribute to the pathological processes involved in Alzheimer's disease (AD). Glutamate released from neurons or glial cells is normally rapidly cleared by glutamate transporters, most of which are expressed at the protein level by glial cells. However, in some patho-physiological situations, expression of glutamate transporters that are normally considered to be glial types, appears to be evoked in populations of distressed neurons. This study analysed the expression of exon-skipping forms of the three predominant excitatory amino acid (glutamate) transporters (EAATs1-3) in brains afflicted with AD. We demonstrate by immunocytochemistry in temporal cortex, the expression of these proteins particularly in limited subsets of neurons, some of which appeared to be dys-morphic. Whilst the neuronal expression of the "glial" glutamate transporters EAAT1 and EAAT2 is frequently considered to represent the abnormal and ectopic expression of such transporters, we suggest this may be a misinterpretation, since neurons such as cortical pyramidal cells normally express abundant mRNA for these EAATs (but little if any EAAT protein expression). We hypothesize instead that distressed neurons in the AD brain can turn on the translation of pre-existent mRNA pools, or suppress the degradation of alternately spliced glutamate transporter protein, leading to the "unmasking" of, rather than evoked expression of "glial" glutamate transporters in stressed neurons.
谷氨酸稳态的异常可能与阿尔茨海默病(AD)相关的病理过程有关。神经元或神经胶质细胞释放的谷氨酸通常被谷氨酸转运体迅速清除,其中大多数在蛋白质水平上由神经胶质细胞表达。然而,在某些病理生理情况下,通常被认为是神经胶质类型的谷氨酸转运体的表达似乎在受损神经元的群体中被诱发。本研究分析了在 AD 受累大脑中三种主要兴奋性氨基酸(谷氨酸)转运体(EAAT1-3)的外显子跳跃形式的表达。我们通过颞叶皮质的免疫细胞化学证明,这些蛋白质在有限的神经元亚群中表达,其中一些神经元似乎形态异常。虽然“神经胶质”谷氨酸转运体 EAAT1 和 EAAT2 的神经元表达通常被认为代表这些转运体的异常和异位表达,但我们认为这可能是一种误解,因为皮质锥体细胞等神经元通常表达大量这些 EAAT 的 mRNA(但几乎没有 EAAT 蛋白表达)。相反,我们假设 AD 大脑中的受损神经元可以开启预先存在的 mRNA 池的翻译,或者抑制交替剪接的谷氨酸转运体蛋白的降解,从而导致“掩盖”而不是应激神经元中“神经胶质”谷氨酸转运体的诱发表达。