School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
J Biol Chem. 2010 Oct 8;285(41):31313-24. doi: 10.1074/jbc.M110.153494. Epub 2010 Aug 5.
The glial transporter excitatory amino acid transporter-2 (EAAT2) is the main mediator of glutamate clearance in brain. The wild-type transporter (EAAT2wt) forms trimeric membrane complexes in which each protomer functions autonomously. Several EAAT2 variants are found in control and Alzheimer-diseased human brains; their expression increases with pathological severity. These variants might alter EAAT2wt-mediated transport by abrogating membrane trafficking, or by changing the configuration or functionality of the assembled transporter complex. HEK293 cells were transfected with EAAT2wt; EAAT2b, a C-terminal variant; or either of two exon-skipping variants: alone or in combination. Surface biotinylation studies showed that only the exon-7 deletion variant was not trafficked to the membrane when transfected alone, and that all variants could reach the membrane when co-transfected with EAAT2wt. Fluorescence resonance energy transfer (FRET) studies showed that co-transfected EAAT2wt and EAAT2 splice variants were expressed in close proximity. Glutamate transporter function was measured using a whole cell patch clamp technique, or by changes in membrane potential indexed by a voltage-sensitive fluorescent dye (FMP assay): the two methods gave comparable results. Cells transfected with EAAT2wt or EAAT2b showed glutamate-dependent membrane potential changes consistent with functional expression. Cells transfected with EAAT2 exon-skipping variants alone gave no response to glutamate. Co-transfection of EAAT2wt (or EAAT2b) and splice variants in various ratios significantly raised glutamate EC(50) and decreased Hill coefficients. We conclude that exon-skipping variants form heteromeric complexes with EAAT2wt or EAAT2b that traffic to the membrane but show reduced glutamate-dependent activity. This could allow glutamate to accumulate extracellularly and promote excitotoxicity.
胶质细胞谷氨酸转运体 2(EAAT2)是大脑中谷氨酸清除的主要介质。野生型转运体(EAAT2wt)形成三聚体膜复合物,其中每个单体都能独立发挥作用。在对照和阿尔茨海默病患者的大脑中发现了几种 EAAT2 变体;它们的表达随着病理严重程度的增加而增加。这些变体可能通过破坏膜运输,或通过改变组装转运体复合物的构象或功能,改变 EAAT2wt 介导的转运。用 EAAT2wt;EAAT2b,一种 C 端变体;或两种外显子跳跃变体中的任一种:单独或组合转染 HEK293 细胞。表面生物素化研究表明,仅外显子 7 缺失变体在单独转染时不能转运到膜上,而所有变体在与 EAAT2wt 共转染时都可以到达膜上。荧光共振能量转移(FRET)研究表明,共转染的 EAAT2wt 和 EAAT2 剪接变体表达得非常接近。使用全细胞膜片钳技术或通过电压敏感荧光染料(FMP 测定)测量的膜电位变化来测量谷氨酸转运体功能:这两种方法给出了可比的结果。转染 EAAT2wt 或 EAAT2b 的细胞显示出与功能性表达一致的谷氨酸依赖性膜电位变化。单独转染 EAAT2 外显子跳跃变体的细胞对谷氨酸没有反应。以各种比例共转染 EAAT2wt(或 EAAT2b)和剪接变体显著提高了谷氨酸 EC(50)并降低了 Hill 系数。我们得出结论,外显子跳跃变体与 EAAT2wt 或 EAAT2b 形成异源二聚体复合物,这些复合物能够转运到膜上,但表现出降低的谷氨酸依赖性活性。这可能导致谷氨酸在细胞外积累并促进兴奋性毒性。