de Marco G, Devauchelle B, Berquin P
Département de Neuropédiatrie, UPJV, CHU-Nord, Amiens, France.
Neurosci Res. 2009 May;64(1):12-9. doi: 10.1016/j.neures.2009.01.015. Epub 2009 Feb 7.
The description of specific circuits in networks should allow a more realistic definition of dynamic functioning of the central nervous system which underlies various brain functions. After introducing the programmed and acquired networks and recalling the concepts of functional and effective connectivity, we presented biophysical and physiological aspects of the BOLD signal. Then, we briefly presented a few data-driven and hypothesis-driven methods; in particular we described structural equation modeling (SEM), a hypothesis-driven approach used to explore circuits within networks and model spatially and anatomically interconnected regions. We compared the SEM method with an alternative hypothesis-driven method, dynamic causal modeling (DCM). Finally, we presented independent components analysis (ICA), an exploratory data-driven approach which could be used to complete the directed brain interactivity studies. ICA combined with SEM/DCM may allow extension of the statistical and explanatory power of fMRI data.
对网络中特定回路的描述应能更现实地定义中枢神经系统的动态功能,而中枢神经系统是各种脑功能的基础。在介绍了编程网络和习得网络并回顾了功能连接和有效连接的概念之后,我们阐述了BOLD信号的生物物理和生理方面。然后,我们简要介绍了一些数据驱动和假设驱动的方法;特别地,我们描述了结构方程模型(SEM),这是一种假设驱动的方法,用于探索网络内的回路并对空间和解剖学上相互连接的区域进行建模。我们将SEM方法与另一种假设驱动的方法——动态因果模型(DCM)进行了比较。最后,我们介绍了独立成分分析(ICA),这是一种探索性的数据驱动方法,可用于完善定向脑交互性研究。ICA与SEM/DCM相结合可能会扩展功能磁共振成像(fMRI)数据的统计和解释能力。