Center for NMR Research, Department of Radiology, The Pennsylvania State University College of Medicine Hershey, PA, USA.
Front Syst Neurosci. 2011 Jun 1;5:29. doi: 10.3389/fnsys.2011.00029. eCollection 2011.
Human language is a complex and protean cognitive ability. Young children, following well defined developmental patterns learn language rapidly and effortlessly producing full sentences by the age of 3 years. However, the language circuitry continues to undergo significant neuroplastic changes extending well into teenage years. Evidence suggests that the developing brain adheres to two rudimentary principles of functional organization: functional integration and functional specialization. At a neurobiological level, this distinction can be identified with progressive specialization or focalization reflecting consolidation and synaptic reinforcement of a network (Lenneberg, 1967; Muller et al., 1998; Berl et al., 2006). In this paper, we used group independent component analysis and linear structural equation modeling (McIntosh and Gonzalez-Lima, 1994; Karunanayaka et al., 2007) to tease out the developmental trajectories of the language circuitry based on fMRI data from 336 children ages 5-18 years performing a blocked, covert verb generation task. The results are analyzed and presented in the framework of theoretical models for neurocognitive brain development. This study highlights the advantages of combining both modular and connectionist approaches to cognitive functions; from a methodological perspective, it demonstrates the feasibility of combining data-driven and hypothesis driven techniques to investigate the developmental shifts in the semantic network.
人类语言是一种复杂且多变的认知能力。儿童在经过明确的发展模式后,能够迅速且轻松地学习语言,并在 3 岁时就能说出完整的句子。然而,语言回路仍在持续发生显著的神经可塑性变化,这种变化一直持续到青少年时期。有证据表明,发育中的大脑遵循两个基本的功能组织原则:功能整合和功能专门化。在神经生物学层面上,这种区别可以通过逐渐的专业化或焦点化来识别,这反映了一个网络的巩固和突触强化(Lenneberg,1967;Muller 等人,1998;Berl 等人,2006)。在本文中,我们使用组独立成分分析和线性结构方程模型(McIntosh 和 Gonzalez-Lima,1994;Karunanayaka 等人,2007),根据 336 名 5-18 岁儿童在执行阻塞性、隐蔽动词生成任务时的 fMRI 数据,梳理语言回路的发展轨迹。结果在神经认知大脑发育的理论模型框架内进行了分析和呈现。本研究强调了将模块化和连接主义方法结合起来研究认知功能的优势;从方法论的角度来看,它证明了结合数据驱动和假设驱动技术来研究语义网络的发展转变是可行的。