de Marco Giovanni, Vrignaud Pierre, Destrieux Christophe, de Marco Damien, Testelin Sylvie, Devauchelle Bernard, Berquin Patrick
Laboratoire de traitement d'images médicales, Service de chirurgie maxillofaciale et stomatologie, Département de traitement de l'image médicale, CNRS FRE 2726, UPJV, CHU-Nord, 80054 Amiens, France.
Magn Reson Imaging. 2009 Jan;27(1):1-12. doi: 10.1016/j.mri.2008.05.003. Epub 2008 Jun 26.
Functional neuroimaging first allowed researchers to describe the functional segregation of regionally activated areas during a variety of experimental tasks. More recently, functional integration studies have described how these functionally specialized areas, interact within a highly distributed neural network. When applied to the field of neurosciences, structural equation modeling (SEM) uses theoretical and/or empirical hypotheses to estimate the effects of an experimental task within a putative network. SEM represents a linear technique for multivariate analysis of neuroimaging data and has been developed to simultaneously examine ratios of multiple causality in an experimental design; the method attempts to explain a covariance structure within an anatomical constrained model. This method, when combined with the concept of effective connectivity, can provide information on the strength and direction of the functional interactions that take place between identified brain regions of a putative network.
功能性神经成像首先使研究人员能够描述在各种实验任务中区域激活区域的功能分离。最近,功能整合研究描述了这些功能特化区域如何在高度分布式神经网络中相互作用。当应用于神经科学领域时,结构方程建模(SEM)使用理论和/或经验假设来估计假定网络内实验任务的影响。SEM代表一种用于神经成像数据多变量分析的线性技术,并且已被开发用于在实验设计中同时检查多重因果关系的比率;该方法试图解释解剖学约束模型内的协方差结构。当与有效连接的概念相结合时,这种方法可以提供有关假定网络中已识别脑区之间发生的功能相互作用的强度和方向的信息。