Suppr超能文献

药物安全数据挖掘算法与传统信号标准的信号生成时间比较。

Time-to-signal comparison for drug safety data-mining algorithms vs. traditional signaling criteria.

作者信息

Hochberg A M, Hauben M

机构信息

ProSanos Corporation, Harrisburg, Pennsylvania, USA.

出版信息

Clin Pharmacol Ther. 2009 Jun;85(6):600-6. doi: 10.1038/clpt.2009.26. Epub 2009 Mar 25.

Abstract

Data mining may improve identification of signals, but its incremental utility is in question. The objective of this study was to compare associations highlighted by data mining vs. those highlighted through the use of traditional decision rules. In the case of 29 drugs, we used US Food and Drug Administration (FDA) Adverse Event Reporting System (AERS) data to compare three data-mining algorithms (DMAs) with two traditional decision rules: (i) N >or= 3 reports for a designated medical event (DME) and (ii) any event comprising >2% of reports in relation to a drug. Data-mining methods produced 101-324 signals vs. 1,051 for the N >or= 3 rule but yielded a higher proportion of signals having publication support. For the 2% rule, the fraction of signals having publication support was similar to that associated with data mining. Data-mining signals lagged N >or= 3 signaling by 1.5-11.0 months. It may therefore be concluded that data mining identifies fewer signals than the "N >or= 3 DME" rule. The signals appear later with data mining but are more often supported by publications. In the case of the 2% rule, no such difference in publication support was observed.

摘要

数据挖掘可能会改善信号识别,但其实用性的增量仍存在疑问。本研究的目的是比较数据挖掘所突出显示的关联与通过使用传统决策规则所突出显示的关联。对于29种药物,我们使用美国食品药品监督管理局(FDA)不良事件报告系统(AERS)的数据,将三种数据挖掘算法(DMA)与两种传统决策规则进行比较:(i)指定医疗事件(DME)的报告数N≥3,以及(ii)任何事件占某种药物报告数的比例>2%。数据挖掘方法产生了101 - 324个信号,而N≥3规则产生了1051个信号,但数据挖掘产生的信号中获得文献支持的比例更高。对于2%规则,获得文献支持的信号比例与数据挖掘相关的比例相似。数据挖掘信号比N≥3信号滞后1.5 - 11.0个月。因此可以得出结论,数据挖掘识别出的信号比“N≥3 DME”规则少。数据挖掘产生的信号出现较晚,但更常得到文献支持。对于2%规则,未观察到文献支持方面的此类差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验