Suppr超能文献

MedDRA 层次结构对药物警戒数据挖掘结果的影响。

Influence of the MedDRA hierarchy on pharmacovigilance data mining results.

机构信息

ProSanos Corporation, Harrisburg, PA 17102, USA.

出版信息

Int J Med Inform. 2009 Dec;78(12):e97-e103. doi: 10.1016/j.ijmedinf.2009.01.001. Epub 2009 Feb 18.

Abstract

PURPOSE

To compare the results of drug safety data mining with three different algorithms, when adverse events are identified using MedDRA Preferred Terms (PT) vs. High Level Terms (HLT) vs. Standardised MedDRA Queries (SMQ).

METHODS

For a representative set of 26 drugs, data from the FDA Adverse Event Reporting System (AERS) database from 2001 through 2005 was mined for signals of disproportionate reporting (SDRs) using three different data mining algorithms (DMAs): the Gamma Poisson Shrinker (GPS), the urn-model algorithm (URN), and the proportional reporting rate (PRR) algorithm. Results were evaluated using a previously described Reference Event Database (RED) which contains documented drug-event associations for the 26 drugs. Analysis emphasized the percentage of SDRs in the "unlabeled supported" category, corresponding to those adverse events that were not described in the U.S. prescribing information for the drug at the time of its approval, but which were supported by some published evidence for an association with the drug.

RESULTS

Based on a logistic regression analysis, the percentage of unlabeled supported SDRs was smallest at the PT level, intermediate at the HLT level, and largest at the SMQ level, for all three algorithms. The GPS and URN methods detected comparable percentages of unlabeled supported SDRs while the PRR method detected a smaller percentage, at all three MedDRA levels. No evidence of a method/level interaction was seen.

CONCLUSIONS

Use of HLT and SMQ groupings can improve the percentage of unlabeled supported SDRs in data mining results. The trade-off for this gain is the medically less-specific language of HLTs and SMQs compared to PTs, and the need for the added step in data mining of examining the component PTs of each HLT or SMQ that results in a signal of disproportionate reporting.

摘要

目的

比较使用 MedDRA 首选术语 (PT)、高级术语 (HLT) 和标准化 MedDRA 查询 (SMQ) 识别不良事件时,三种不同算法在药物安全性数据挖掘中的结果。

方法

对于 26 种代表性药物,从 2001 年至 2005 年的 FDA 不良事件报告系统 (AERS) 数据库中挖掘了信号不均匀报告 (SDR),使用三种不同的数据挖掘算法 (DMA):伽马泊松收缩器 (GPS)、 urn 模型算法 (URN) 和比例报告率 (PRR) 算法。结果使用先前描述的参考事件数据库 (RED) 进行评估,该数据库包含 26 种药物的已记录药物-事件关联。分析强调了“未标记支持”类别中的 SDR 百分比,对应于在药物批准时未在药物的美国处方信息中描述但有一些已发表证据支持与药物相关的不良反应事件。

结果

基于逻辑回归分析,对于所有三种算法,PT 水平的 SDR 百分比最小,HLT 水平中等,SMQ 水平最大。GPS 和 URN 方法检测到可比比例的未标记支持的 SDR,而 PRR 方法在所有三种 MedDRA 水平上检测到的比例较小。未发现方法/水平相互作用的证据。

结论

使用 HLT 和 SMQ 分组可以提高数据挖掘结果中未标记支持的 SDR 百分比。这种收益的代价是与 PT 相比,HLT 和 SMQ 的语言在医学上不够具体,并且需要在数据挖掘中增加一个步骤,检查每个 HLT 或 SMQ 的组成 PT,这会导致信号不均匀报告。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验