Fernandez-Ballester Gregorio, Beltrao Pedro, Gonzalez Jose Manuel, Song Young-Hwa, Wilmanns Matthias, Valencia Alfonso, Serrano Luis
Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Edificio Torregaitán, Elche, Alicante, Spain.
J Mol Biol. 2009 May 15;388(4):902-16. doi: 10.1016/j.jmb.2009.03.038. Epub 2009 Mar 24.
A great challenge in the proteomics and structural genomics era is to discover protein structure and function, including the identification of biological partners. Experimental investigation is costly and time-consuming, making computational methods very attractive for predicting protein function. In this work, we used the existing structural information in the SH3 family to first extract all SH3 structural features important for binding and then used this information to select the right templates to homology model most of the Saccharomyces cerevisiae SH3 domains. Second, we classified, based on ligand orientation with respect to the SH3 domain, all SH3 peptide ligands into 29 conformations, of which 18 correspond to variants of canonical type I and type II conformations and 11 correspond to non-canonical conformations. Available SH3 templates were expanded by chimera construction to cover some sequence variability and loop conformations. Using the 29 ligand conformations and the homology models, we modelled all possible complexes. Using these complexes and in silico mutagenesis scanning, we constructed position-specific ligand binding matrices. Using these matrices, we determined which sequences will be favorable for every SH3 domain and then validated them with available experimental data. Our work also allowed us to identify key residues that determine loop conformation in SH3 domains, which could be used to model human SH3 domains and do target prediction. The success of this methodology opens the way for sequence-based, genome-wide prediction of protein-protein interactions given enough structural coverage.
蛋白质组学和结构基因组学时代的一个巨大挑战是发现蛋白质的结构和功能,包括识别其生物学伴侣。实验研究成本高且耗时,这使得计算方法在预测蛋白质功能方面极具吸引力。在这项工作中,我们利用SH3家族现有的结构信息,首先提取所有对结合至关重要的SH3结构特征,然后利用这些信息选择合适的模板,对大多数酿酒酵母SH3结构域进行同源建模。其次,我们根据配体相对于SH3结构域的方向,将所有SH3肽配体分类为29种构象,其中18种对应于典型I型和II型构象的变体,11种对应于非典型构象。通过嵌合体构建扩展可用的SH3模板,以覆盖一些序列变异性和环构象。利用这29种配体构象和同源模型,我们对所有可能的复合物进行了建模。利用这些复合物和计算机诱变扫描,我们构建了位置特异性配体结合矩阵。利用这些矩阵,我们确定了哪些序列对每个SH3结构域是有利的,然后用现有的实验数据对其进行验证。我们的工作还使我们能够识别决定SH3结构域中环构象的关键残基,这些残基可用于对人类SH3结构域进行建模和进行靶点预测。这种方法的成功为在有足够结构覆盖的情况下基于序列的全基因组蛋白质-蛋白质相互作用预测开辟了道路。