Suppr超能文献

计算方法与深度学习在阐明蛋白质相互作用网络中的应用。

Computational Methods and Deep Learning for Elucidating Protein Interaction Networks.

机构信息

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.

School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.

出版信息

Methods Mol Biol. 2023;2553:285-323. doi: 10.1007/978-1-0716-2617-7_15.

Abstract

Protein interactions play a critical role in all biological processes, but experimental identification of protein interactions is a time- and resource-intensive process. The advances in next-generation sequencing and multi-omics technologies have greatly benefited large-scale predictions of protein interactions using machine learning methods. A wide range of tools have been developed to predict protein-protein, protein-nucleic acid, and protein-drug interactions. Here, we discuss the applications, methods, and challenges faced when employing the various prediction methods. We also briefly describe ways to overcome the challenges and prospective future developments in the field of protein interaction biology.

摘要

蛋白质相互作用在所有生物过程中都起着至关重要的作用,但实验鉴定蛋白质相互作用是一个耗时且资源密集型的过程。下一代测序和多组学技术的进步极大地促进了使用机器学习方法对蛋白质相互作用进行大规模预测。已经开发了广泛的工具来预测蛋白质-蛋白质、蛋白质-核酸和蛋白质-药物相互作用。在这里,我们讨论了使用各种预测方法时的应用、方法和面临的挑战。我们还简要描述了克服挑战和蛋白质相互作用生物学领域未来发展的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验