Garza Renee M, Sato Brian K, Hampton Randolph Y
Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, USA.
J Biol Chem. 2009 May 29;284(22):14710-22. doi: 10.1074/jbc.M809607200. Epub 2009 Mar 26.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.
内质网(ER)相关降解(ERAD)负责泛素介导的错误折叠和正常内质网驻留蛋白的破坏。ERAD底物必须通过一种称为逆向转运的过程从内质网转移到细胞质中进行泛素化和蛋白酶体破坏。逆向转运的许多方面仍知之甚少,包括其普遍性、所需的细胞成分、能量学以及通过内质网膜的转移机制。为了解决这些问题,我们开发了一种体外测定方法,使用与绿色荧光蛋白(GFP)融合的HMG-CoA还原酶的8跨膜结构域内质网驻留同工酶Hmg2p,它经历由Hrd1p泛素连接酶介导的调控性ERAD。我们现在已经在体外直接证明了全长泛素化的Hmg2p-GFP逆向转运到水相。Hrd1p是Hmg2p-GFP逆向转运的限速因素,这需要ATP、AAA-ATP酶Cdc48p及其受体Ubx2p。此外,通常参与该途径后期部分的衔接蛋白Dsk2p和Rad23p也是必需的。Hmg2p-GFP逆向转运不依赖于任何已提出的内质网通道候选物。为了研究Hrd1p跨膜结构域作为逆向转运体的作用,我们设计了一种在没有Hrd1p的情况下经历ERAD的自泛素化多结构域底物(Hmg1-Hrd1p)。全长Hmg1-Hrd1p的体外逆向转运在没有Hrd1p跨膜结构域的情况下发生,表明它不具有必需的通道功能。这些研究直接证明了ERAD过程中多结构域膜蛋白的逆向转运,并为深入了解这一普遍过程的机制指明了方向。