Suppr超能文献

MECP2重复患者中的复杂重排可通过叉停滞和模板转换发生。

Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching.

作者信息

Carvalho Claudia M B, Zhang Feng, Liu Pengfei, Patel Ankita, Sahoo Trilochan, Bacino Carlos A, Shaw Chad, Peacock Sandra, Pursley Amber, Tavyev Y Jane, Ramocki Melissa B, Nawara Magdalena, Obersztyn Ewa, Vianna-Morgante Angela M, Stankiewicz Pawel, Zoghbi Huda Y, Cheung Sau Wai, Lupski James R

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Hum Mol Genet. 2009 Jun 15;18(12):2188-203. doi: 10.1093/hmg/ddp151. Epub 2009 Mar 26.

Abstract

Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from approximately 250 kb to approximately 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.

摘要

Xq28染色体带的重复,包括MECP2基因,是在神经发育迟缓男性中发现的最常见的基因组重排之一。这种重复是非重复性的,可由非同源末端连接(NHEJ)机制产生。我们研究了MECP2重复的潜在机制,并使用定制设计的4兆碱基平铺路径寡核苷酸阵列比较基因组杂交(CGH)检测,检查基因组结构特征是否可能在其起源中发挥作用。分析的30名患者中的每一位都显示出独特的重复,大小从约250 kb到约2.6 Mb不等。有趣的是,在这些非重复性重复中,77%的远端断点聚集在一个215 kb的基因组区间内,该区间位于MECP2基因端粒47 kb处。该区域的基因组结构包含正向和反向低拷贝重复(LCR)序列;在普通人群中,该区域会发生多态性结构变异。阵列CGH显示8名患者存在复杂重排;6名患者的重复包含一个嵌入的三倍体片段,另外两名患者的重复区域内出现了非重复序列片段。在四个重复中实现了断点连接测序,并在一名患者中鉴定出一次倒位,这进一步证明了其复杂性。我们提出,MECP2基因附近LCR的存在可能产生不稳定的DNA结构,从而诱导DNA链损伤,如塌陷的叉,并促进叉停滞和模板转换事件,从而产生涉及MECP2的复杂重排。

相似文献

1
Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching.
Hum Mol Genet. 2009 Jun 15;18(12):2188-203. doi: 10.1093/hmg/ddp151. Epub 2009 Mar 26.
2
3
Chromosome Xq28 duplication encompassing MECP2: Clinical and molecular analysis of 16 new patients from 10 families in China.
Eur J Med Genet. 2016 Jun;59(6-7):347-53. doi: 10.1016/j.ejmg.2016.05.004. Epub 2016 May 11.
5
Molecular and clinical insights into complex genomic rearrangements related to MECP2 duplication syndrome.
Eur J Med Genet. 2021 Dec;64(12):104367. doi: 10.1016/j.ejmg.2021.104367. Epub 2021 Oct 19.
6
MECP2 duplications in six patients with complex sex chromosome rearrangements.
Eur J Hum Genet. 2011 Apr;19(4):409-15. doi: 10.1038/ejhg.2010.195. Epub 2010 Dec 1.
8
Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease.
Hum Mol Genet. 2006 Jul 15;15(14):2250-65. doi: 10.1093/hmg/ddl150. Epub 2006 Jun 14.
9
De novo MECP2 duplication derived from paternal germ line result in dysmorphism and developmental delay.
Gene. 2014 Jan 1;533(1):78-85. doi: 10.1016/j.gene.2013.10.001. Epub 2013 Oct 12.

引用本文的文献

1
A Systematic Review of the Advances and New Insights into Copy Number Variations in Plant Genomes.
Plants (Basel). 2025 May 6;14(9):1399. doi: 10.3390/plants14091399.
2
Diversity and consequences of structural variation in the human genome.
Nat Rev Genet. 2025 Jan 21. doi: 10.1038/s41576-024-00808-9.
6
Genomic Balancing Act: deciphering DNA rearrangements in the complex chromosomal aberration involving 5p15.2, 2q31.1, and 18q21.32.
Eur J Hum Genet. 2025 Mar;33(2):231-238. doi: 10.1038/s41431-024-01680-1. Epub 2024 Sep 10.
7
Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci.
Cell Genom. 2024 Jul 10;4(7):100590. doi: 10.1016/j.xgen.2024.100590. Epub 2024 Jun 21.
9
MECP2-related disorders while gene-based therapies are on the horizon.
Front Genet. 2024 Feb 12;15:1332469. doi: 10.3389/fgene.2024.1332469. eCollection 2024.
10
Detection of mosaic and population-level structural variants with Sniffles2.
Nat Biotechnol. 2024 Oct;42(10):1571-1580. doi: 10.1038/s41587-023-02024-y. Epub 2024 Jan 2.

本文引用的文献

2
CNV and nervous system diseases--what's new?
Cytogenet Genome Res. 2008;123(1-4):54-64. doi: 10.1159/000184692. Epub 2009 Mar 11.
3
A microhomology-mediated break-induced replication model for the origin of human copy number variation.
PLoS Genet. 2009 Jan;5(1):e1000327. doi: 10.1371/journal.pgen.1000327. Epub 2009 Jan 30.
4
Increased LIS1 expression affects human and mouse brain development.
Nat Genet. 2009 Feb;41(2):168-77. doi: 10.1038/ng.302. Epub 2009 Jan 11.
5
Mechanisms for human genomic rearrangements.
Pathogenetics. 2008 Nov 3;1(1):4. doi: 10.1186/1755-8417-1-4.
7
Clinical variability of the 22q11.2 duplication syndrome.
Eur J Med Genet. 2008 Nov-Dec;51(6):501-10. doi: 10.1016/j.ejmg.2008.07.005. Epub 2008 Jul 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验