Suppr超能文献

在 MECP2 重复综合征人类 iPSC 衍生神经元中模拟反义寡核苷酸治疗揭示了对 MeCP2 水平有反应的基因表达程序。

Modeling antisense oligonucleotide therapy in MECP2 duplication syndrome human iPSC-derived neurons reveals gene expression programs responsive to MeCP2 levels.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, United States.

出版信息

Hum Mol Genet. 2024 Nov 8;33(22):1986-2001. doi: 10.1093/hmg/ddae135.

Abstract

Genomic copy-number variations (CNVs) that can cause neurodevelopmental disorders often encompass many genes, which complicates our understanding of how individual genes within a CNV contribute to pathology. MECP2 duplication syndrome (MDS or MRXSL in OMIM; OMIM#300260) is one such CNV disorder caused by duplications spanning methyl CpG-binding protein 2 (MECP2) and other genes on Xq28. Using an antisense oligonucleotide (ASO) to normalize MECP2 dosage is sufficient to rescue abnormal neurological phenotypes in mouse models overexpressing MECP2 alone, implicating the importance of increased MECP2 dosage within CNVs of Xq28. However, because MDS CNVs span MECP2 and additional genes, we generated human neurons from multiple MDS patient-derived induced pluripotent cells (iPSCs) to evaluate the benefit of using an ASO against MECP2 in a MDS human neuronal context. Importantly, we identified a signature of genes that is partially and qualitatively modulated upon ASO treatment, pinpointed genes sensitive to MeCP2 function, and altered in a model of Rett syndrome, a neurological disorder caused by loss of MeCP2 function. Furthermore, the signature contained genes that are aberrantly altered in unaffected control human neurons upon MeCP2 depletion, revealing gene expression programs qualitatively sensitive to MeCP2 levels in human neurons. Lastly, ASO treatment led to a partial rescue of abnormal neuronal morphology in MDS neurons. All together, these data demonstrate that ASOs targeting MECP2 benefit human MDS neurons. Moreover, our study establishes a paradigm by which to evaluate the contribution of individual genes within a CNV to pathogenesis and to assess their potential as a therapeutic target.

摘要

基因组拷贝数变异(CNVs)可引起神经发育障碍,这些变异通常包含多个基因,这使得我们难以理解 CNV 中单个基因如何导致病变。MECP2 重复综合征(MDS 或在 OMIM 中的 MRXSL;OMIM#300260)是一种由跨越甲基 CpG 结合蛋白 2(MECP2)和 Xq28 上其他基因的重复引起的 CNV 疾病。使用反义寡核苷酸(ASO)来使 MECP2 剂量正常化足以挽救单独过表达 MECP2 的小鼠模型中的异常神经表型,这表明 Xq28 中的 CNVs 中增加的 MECP2 剂量很重要。然而,由于 MDS CNVs 跨越 MECP2 和其他基因,我们从多个 MDS 患者来源的诱导多能干细胞(iPSC)中生成人类神经元,以评估在 MDS 人类神经元环境中使用 ASO 针对 MECP2 的益处。重要的是,我们确定了一个基因特征,该特征在 ASO 处理后部分且定性地发生变化,确定了对 MeCP2 功能敏感的基因,并改变了雷特综合征(一种由 MeCP2 功能丧失引起的神经退行性疾病)的模型中。此外,该特征包含在 MeCP2 耗竭时在未受影响的对照人类神经元中异常改变的基因,揭示了人类神经元中 MeCP2 水平定性敏感的基因表达程序。最后,ASO 处理导致 MDS 神经元中异常神经元形态的部分恢复。总而言之,这些数据表明针对 MECP2 的 ASO 有益于人类 MDS 神经元。此外,我们的研究建立了一种范例,可以评估 CNV 中单个基因对发病机制的贡献,并评估它们作为治疗靶标的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f6/11555823/24527cf475b9/ddae135f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验