Zylberberg Ariel, Dehaene Stanislas, Mindlin Gabriel B, Sigman Mariano
Physics Department, University of Buenos Aires Buenos Aires, Argentina.
Front Comput Neurosci. 2009 Mar 11;3:4. doi: 10.3389/neuro.10.004.2009. eCollection 2009.
Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.
行为观察表明,多个感觉元素可以在短时间内维持,形成一个感知缓冲器,该缓冲器在几百毫秒后会消退。在自上而下的控制下,只能访问这个感知缓冲器的一个子集,并将其传输到工作记忆和意识中。反过来,对清醒行为猴子的单细胞研究已经确定了对感觉刺激的两种不同反应波:第一种是短暂反应,主要由刺激特性决定,第二种波则取决于行为相关性、背景和学习。在这里,我们提出了一个简单的生物物理方案,该方案将这些观察结果联系起来,并为神经生理学实验建立了具体的预测,在这些实验中,刺激呈现和自上而下分配之间的时间间隔是通过实验控制的。受单细胞观察的启发,该模型涉及一个初始的短暂反应以及一个放大和检索的第二阶段,这两个阶段在生物物理学上由同一电路的不同操作模式实现,并由外部电流调节。当这两个阶段被一个时间间隔隔开时,我们明确研究了神经元动力学、呈现刺激的记忆痕迹以及正确检索的概率。该模型正确地预测了干扰实验中表现与反应时间的依赖性,这表明感觉缓冲不需要特定的专门机制,并在生物物理操作和行为观察之间建立了直接联系,从而得出具体的预测。