Department of Psychology, University of Oregon, Eugene, Oregon 97402
J Neurosci. 2018 Mar 7;38(10):2495-2504. doi: 10.1523/JNEUROSCI.2724-17.2018. Epub 2018 Feb 2.
Visual attention is thought to be supported by three large-scale frontoparietal networks: the frontoparietal control network (FPCN), the dorsal attention network (DAN), and the ventral attention network (VAN). The traditional view is that these networks support visual attention by biasing and evaluating sensory representations in visual cortical regions. However, recent evidence suggests that frontoparietal regions actively represent perceptual stimuli. Here, we assessed how perceptual stimuli are represented across large-scale frontoparietal and visual networks. Specifically, we tested whether representations of stimulus features across these networks are differentially sensitive to bottom-up and top-down factors. In a pair of pattern-based fMRI studies, male and female human subjects made perceptual decisions about face images that varied along two independent dimensions: gender and affect. Across studies, we interrupted bottom-up visual input using backward masks. Within studies, we manipulated which stimulus features were goal relevant (i.e., whether gender or affect was relevant) and task switching (i.e., whether the goal on the current trial matched the goal on the prior trial). We found that stimulus features could be reliably decoded from all four networks and, importantly, that subregions within each attentional network maintained coherent representations. Critically, the different attentional manipulations (interruption, goal relevance, and task switching) differentially influenced feature representations across networks. Whereas visual interruption had a relatively greater influence on representations in visual regions, goal relevance and task switching had a relatively greater influence on representations in frontoparietal networks. Therefore, large-scale brain networks can be dissociated according to how attention influences the feature representations that they maintain. Visual attention is supported by multiple frontoparietal attentional networks. However, it remains unclear how stimulus features are represented within these networks and how they are influenced by attention. Here, we assessed feature representations in four large-scale networks using a perceptual decision-making paradigm in which we manipulated top-down and bottom-up factors. We found that top-down manipulations such as goal relevance and task switching modulated feature representations in attentional networks, whereas bottom-up manipulations such as interruption of visual processing had a relatively stronger influence on feature representations in visual regions. Together, these findings indicate that attentional networks actively represent stimulus features and that representations within different large-scale networks are influenced by different forms of attention.
额顶控制网络(FPCN)、背侧注意网络(DAN)和腹侧注意网络(VAN)。传统观点认为,这些网络通过偏向和评估视觉皮层区域的感觉表示来支持视觉注意力。然而,最近的证据表明,额顶区域主动表示感知刺激。在这里,我们评估了感知刺激是如何在大规模额顶和视觉网络中表示的。具体来说,我们测试了这些网络中的刺激特征表示是否对自上而下和自下而上的因素有不同的敏感性。在两项基于模式的 fMRI 研究中,男性和女性人类受试者对沿两个独立维度(性别和情感)变化的面孔图像做出了感知决策。在两项研究中,我们使用后向掩蔽来中断下传的视觉输入。在每项研究中,我们操纵哪些刺激特征是目标相关的(即性别或情感是否相关)以及任务转换(即当前试验的目标是否与前一试验的目标匹配)。我们发现,可以从所有四个网络中可靠地解码出刺激特征,重要的是,每个注意力网络的子区域都保持着连贯的表示。关键是,不同的注意力操作(中断、目标相关性和任务转换)在网络之间对特征表示产生了不同的影响。虽然视觉中断对视觉区域的表示有相对较大的影响,但目标相关性和任务转换对额顶网络的表示有相对较大的影响。因此,可以根据注意力对它们保持的特征表示的影响来区分大规模脑网络。视觉注意力是由多个额顶注意力网络支持的。然而,目前尚不清楚刺激特征在这些网络中是如何表示的,以及它们是如何受到注意力的影响的。在这里,我们使用一个感知决策任务范式来评估四个大规模网络中的特征表示,在该范式中,我们操纵了自上而下和自下而上的因素。我们发现,自上而下的操作,如目标相关性和任务转换,调节了注意力网络中的特征表示,而自下而上的操作,如视觉处理的中断,对视觉区域的特征表示有相对较大的影响。总的来说,这些发现表明注意力网络主动表示刺激特征,并且不同的大规模网络中的表示受到不同形式的注意力的影响。