Serrano María-Concepción, Pagani Raffaella, Vallet-Regí María, Peña Juan, Comas Juan-Valentín, Portolés María-Teresa
Department of Biochemistry and Molecular Biology, Universidad Complutense, Madrid, Spain.
Acta Biomater. 2009 Jul;5(6):2045-53. doi: 10.1016/j.actbio.2009.02.034. Epub 2009 Mar 9.
Poly(epsilon-caprolactone) (PCL) is a biodegradable polyester whose biocompatibility has been widely demonstrated both in vivo and in vitro. In the last few years, our group has confirmed that NaOH-treated PCL films can serve as a suitable biomaterial for vascular tissue engineering by supporting the culture of primary vascular cells and, more recently, endothelial-like EC(2) cells derived from endothelial progenitor cells (EPC). In the present study, NO production in basal conditions and after stimulation with different agents has been evaluated and related to the reactive oxygen species (ROS) content and the intracellular calcium levels on EC(2) cells cultured on NaOH-treated PCL films. The results obtained demonstrate that EC(2) seeded on NaOH-treated PCL films enhance the basal NO levels and show a faster, more intense response to physiological stimuli such as VEGF, bradykinin and thrombin than vein endothelial cells (ECv). This result could be indicative of a better capacity of EC(2) cells to maintain their endothelial functionality when seeded on polymers. On the other hand, the culture of both EC(2) and ECv cells on NaOH-treated PCL films induces a significant increase in both ROS content and intracellular calcium that is balanced out through the stimulation of NO production in these cells. In conclusion, these results demonstrate the ability of NaOH-treated PCL films to support endothelial cell production of nitric oxide and reinforce the idea of considering the endothelial-like EC(2) cells derived from blood progenitors as an adequate source of endothelial cells to functionalize vascular grafts. Furthermore, NaOH-treated PCL films could be considered as a promising cellular NO production-inducing biomaterial for vascular tissue engineering applications.
聚己内酯(PCL)是一种可生物降解的聚酯,其生物相容性已在体内和体外得到广泛证明。在过去几年中,我们的研究小组证实,经氢氧化钠处理的PCL薄膜可通过支持原代血管细胞的培养,以及最近支持源自内皮祖细胞(EPC)的内皮样EC(2)细胞的培养,作为血管组织工程的合适生物材料。在本研究中,已评估了在基础条件下以及用不同试剂刺激后一氧化氮(NO)的产生,并将其与在经氢氧化钠处理的PCL薄膜上培养的EC(2)细胞中的活性氧(ROS)含量和细胞内钙水平相关联。获得的结果表明,接种在经氢氧化钠处理的PCL薄膜上的EC(2)细胞可提高基础NO水平,并且与静脉内皮细胞(ECv)相比,对诸如血管内皮生长因子(VEGF)、缓激肽和凝血酶等生理刺激表现出更快、更强烈的反应。这一结果可能表明,EC(2)细胞接种在聚合物上时具有更好的维持其内皮功能的能力。另一方面,EC(2)细胞和ECv细胞在经氢氧化钠处理的PCL薄膜上的培养均会导致ROS含量和细胞内钙显著增加,而通过刺激这些细胞中NO的产生可使这种增加达到平衡。总之,这些结果证明了经氢氧化钠处理的PCL薄膜支持内皮细胞产生一氧化氮的能力,并强化了将源自血液祖细胞的内皮样EC(2)细胞视为使血管移植物功能化的合适内皮细胞来源的观点。此外,经氢氧化钠处理的PCL薄膜可被视为一种有前途的用于血管组织工程应用的诱导细胞产生NO的生物材料。