Casarrubios Laura, Polo-Montalvo Alberto, Serrano María Concepción, Feito María José, Vallet-Regí María, Arcos Daniel, Portolés María Teresa
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
Nanomaterials (Basel). 2021 Apr 24;11(5):1102. doi: 10.3390/nano11051102.
Angiogenic biomaterials are designed to promote vascularization and tissue regeneration. Nanoparticles of bioactive materials loaded with drugs represent an interesting strategy to stimulate osteogenesis and angiogenesis and to inhibit bone resorption. In this work, porcine endothelial progenitor cells (EPCs), essential for blood vessel formation, were isolated and characterized to evaluate the in vitro effects of unloaded (NanoMBGs) and ipriflavone-loaded nanospheres (NanoMBG-IPs), which were designed to prevent osteoporosis. The expression of vascular endothelial growth factor receptor 2 (VEGFR2) was studied in EPCs under different culture conditions: (a) treatment with NanoMBGs or NanoMBG-IPs, (b) culture with media from basal, M1, and M2 macrophages previously treated with NanoMBGs or NanoMBG-IPs, (c) coculture with macrophages in the presence of NanoMBGs or NanoMBG-IPs, and (d) coculture with M2d angiogenic macrophages. The endocytic mechanisms for nanosphere incorporation by EPCs were identified using six different endocytosis inhibitors. The results evidence the great potential of these nanomaterials to enhance VEGFR2 expression and angiogenesis, after intracellular incorporation by EPCs through clathrin-dependent endocytosis, phagocytosis, and caveolae-mediated uptake. The treatment of EPCs with basal, M1, and M2 macrophage culture media and EPC/macrophage coculture studies also confirmed the angiogenic effect of these nanospheres on EPCs, even in the presence of phagocytic cells.
血管生成生物材料旨在促进血管化和组织再生。负载药物的生物活性材料纳米颗粒是一种刺激成骨和血管生成以及抑制骨吸收的有趣策略。在这项工作中,分离并表征了对血管形成至关重要的猪内皮祖细胞(EPCs),以评估未负载(纳米介孔生物玻璃,NanoMBGs)和负载依普黄酮的纳米球(NanoMBG-IPs)的体外效果,这些材料旨在预防骨质疏松症。在不同培养条件下研究了EPCs中血管内皮生长因子受体2(VEGFR2)的表达:(a)用NanoMBGs或NanoMBG-IPs处理;(b)与先前用NanoMBGs或NanoMBG-IPs处理过的基础巨噬细胞、M1巨噬细胞和M2巨噬细胞的培养基共培养;(c)在存在NanoMBGs或NanoMBG-IPs的情况下与巨噬细胞共培养;(d)与M2d血管生成巨噬细胞共培养。使用六种不同的内吞作用抑制剂确定了EPCs摄取纳米球的内吞机制。结果表明,这些纳米材料在通过网格蛋白依赖性内吞作用、吞噬作用和小窝介导的摄取被EPCs细胞内摄取后,具有增强VEGFR2表达和血管生成的巨大潜力。用基础巨噬细胞、M1巨噬细胞和M2巨噬细胞培养基处理EPCs以及EPC/巨噬细胞共培养研究也证实了这些纳米球对EPCs的血管生成作用,即使在存在吞噬细胞的情况下也是如此。