Suppr超能文献

细胞针对D-氨酰基tRNA的防御机制广泛分布。

Widespread distribution of cell defense against D-aminoacyl-tRNAs.

作者信息

Wydau Sandra, van der Rest Guillaume, Aubard Caroline, Plateau Pierre, Blanquet Sylvain

机构信息

Laboratoire de Biochimie and Laboratoire des Mécanismes Réactionnels, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France.

出版信息

J Biol Chem. 2009 May 22;284(21):14096-104. doi: 10.1074/jbc.M808173200. Epub 2009 Mar 30.

Abstract

Several l-aminoacyl-tRNA synthetases can transfer a d-amino acid onto their cognate tRNA(s). This harmful reaction is counteracted by the enzyme d-aminoacyl-tRNA deacylase. Two distinct deacylases were already identified in bacteria (DTD1) and in archaea (DTD2), respectively. Evidence was given that DTD1 homologs also exist in nearly all eukaryotes, whereas DTD2 homologs occur in plants. On the other hand, several bacteria, including most cyanobacteria, lack genes encoding a DTD1 homolog. Here we show that Synechocystis sp. PCC6803 produces a third type of deacylase (DTD3). Inactivation of the corresponding gene (dtd3) renders the growth of Synechocystis sp. hypersensitive to the presence of d-tyrosine. Based on the available genomes, DTD3-like proteins are predicted to occur in all cyanobacteria. Moreover, one or several dtd3-like genes can be recognized in all cellular types, arguing in favor of the nearubiquity of an enzymatic function involved in the defense of translational systems against invasion by d-amino acids.

摘要

几种L-氨酰-tRNA合成酶能够将D-氨基酸转移到其对应的tRNA上。这种有害反应会被D-氨酰-tRNA脱酰基酶抵消。在细菌(DTD1)和古菌(DTD2)中已分别鉴定出两种不同的脱酰基酶。有证据表明,DTD1同源物几乎在所有真核生物中也存在,而DTD2同源物则存在于植物中。另一方面,包括大多数蓝细菌在内的几种细菌缺乏编码DTD1同源物的基因。在此我们表明,集胞藻PCC6803产生了第三种类型的脱酰基酶(DTD3)。相应基因(dtd3)的失活使集胞藻的生长对D-酪氨酸的存在高度敏感。基于现有基因组预测,DTD3样蛋白存在于所有蓝细菌中。此外,在所有细胞类型中都能识别出一个或几个dtd3样基因,这表明参与保护翻译系统免受D-氨基酸入侵的酶功能几乎无处不在。

相似文献

1
Widespread distribution of cell defense against D-aminoacyl-tRNAs.
J Biol Chem. 2009 May 22;284(21):14096-104. doi: 10.1074/jbc.M808173200. Epub 2009 Mar 30.
2
Identification in archaea of a novel D-Tyr-tRNATyr deacylase.
J Biol Chem. 2006 Sep 15;281(37):27575-85. doi: 10.1074/jbc.M605860200. Epub 2006 Jul 13.
3
Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells.
J Biol Chem. 2000 Oct 20;275(42):32535-42. doi: 10.1074/jbc.M005166200.
5
Spectrophotometric assays for monitoring tRNA aminoacylation and aminoacyl-tRNA hydrolysis reactions.
Methods. 2017 Jan 15;113:3-12. doi: 10.1016/j.ymeth.2016.10.010. Epub 2016 Oct 22.
6
The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase.
J Biol Chem. 2005 Jul 8;280(27):25887-91. doi: 10.1074/jbc.M502174200. Epub 2005 May 10.
7
D-Amino acids and D-Tyr-tRNA(Tyr) deacylase: stereospecificity of the translation machine revisited.
FEBS Lett. 2003 Sep 25;552(2-3):95-8. doi: 10.1016/s0014-5793(03)00858-5.
8
GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase.
Nucleic Acids Res. 2007;35(3):930-8. doi: 10.1093/nar/gkl1145. Epub 2007 Jan 23.
9
10
A chiral selectivity relaxed paralog of DTD for proofreading tRNA mischarging in Animalia.
Nat Commun. 2018 Feb 6;9(1):511. doi: 10.1038/s41467-017-02204-w.

引用本文的文献

1
Mammalian Tolerance to Amino Acid Heterochirality.
Chembiochem. 2025 Jul 11;26(13):e202500273. doi: 10.1002/cbic.202500273. Epub 2025 Jun 19.
2
DTD1 modulates synaptic efficacy by maintaining D-serine and D-aspartate homeostasis.
Sci China Life Sci. 2025 Feb;68(2):467-483. doi: 10.1007/s11427-023-2681-y. Epub 2024 Oct 16.
3
When Paul Berg meets Donald Crothers: an achiral connection through protein biosynthesis.
Nucleic Acids Res. 2024 Mar 21;52(5):2130-2141. doi: 10.1093/nar/gkae117.
5
TATDN2 resolution of R-loops is required for survival of BRCA1-mutant cancer cells.
Nucleic Acids Res. 2023 Dec 11;51(22):12224-12241. doi: 10.1093/nar/gkad952.
6
Biological effects of the loss of homochirality in a multicellular organism.
Nat Commun. 2022 Nov 18;13(1):7059. doi: 10.1038/s41467-022-34516-x.
7
Recruitment of archaeal DTD is a key event toward the emergence of land plants.
Sci Adv. 2021 Feb 3;7(6). doi: 10.1126/sciadv.abe8890. Print 2021 Feb.
8
Aminoacyl-tRNA synthetases.
RNA. 2020 Aug;26(8):910-936. doi: 10.1261/rna.071720.119. Epub 2020 Apr 17.
9
Chiral checkpoints during protein biosynthesis.
J Biol Chem. 2019 Nov 8;294(45):16535-16548. doi: 10.1074/jbc.REV119.008166. Epub 2019 Oct 7.
10
Expanding the Scope of Protein Synthesis Using Modified Ribosomes.
J Am Chem Soc. 2019 Apr 24;141(16):6430-6447. doi: 10.1021/jacs.9b02109. Epub 2019 Apr 5.

本文引用的文献

1
Natural homolog of tRNA synthetase editing domain rescues conditional lethality caused by mistranslation.
J Biol Chem. 2008 Oct 31;283(44):30073-8. doi: 10.1074/jbc.M805943200. Epub 2008 Aug 22.
2
5
The Radical SAM Superfamily.
Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):63-88. doi: 10.1080/10409230701829169.
6
The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii.
BMC Evol Biol. 2007 Oct 1;7:181. doi: 10.1186/1471-2148-7-181.
7
S-adenosylmethionine as an oxidant: the radical SAM superfamily.
Trends Biochem Sci. 2007 Mar;32(3):101-10. doi: 10.1016/j.tibs.2007.01.002. Epub 2007 Feb 8.
8
Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B.
J Biol Chem. 2007 Apr 6;282(14):10441-8. doi: 10.1074/jbc.M609632200. Epub 2007 Jan 30.
9
GEK1, a gene product of Arabidopsis thaliana involved in ethanol tolerance, is a D-aminoacyl-tRNA deacylase.
Nucleic Acids Res. 2007;35(3):930-8. doi: 10.1093/nar/gkl1145. Epub 2007 Jan 23.
10
The 160-kilobase genome of the bacterial endosymbiont Carsonella.
Science. 2006 Oct 13;314(5797):267. doi: 10.1126/science.1134196.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验