Suppr超能文献

利用修饰核糖体扩展蛋白质合成的范围。

Expanding the Scope of Protein Synthesis Using Modified Ribosomes.

机构信息

Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.

出版信息

J Am Chem Soc. 2019 Apr 24;141(16):6430-6447. doi: 10.1021/jacs.9b02109. Epub 2019 Apr 5.

Abstract

The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.

摘要

核糖体产生细胞中存在的所有蛋白质和许多肽。作为一个由 RNA 和蛋白质组成的大分子复合物,它利用组成 RNA 快速且高度保真地催化肽键的形成。因此,可以说核糖体代表了 RNA 世界与目前以蛋白质催化剂为主导的生物系统之间的关键联系,在 RNA 世界中,RNA 是主要的催化剂。尽管 rRNA 在进化历史中具有众所周知的系统发育保守性,但当置于适当的压力下时,rRNA 很容易发生改变,例如存在与 rRNA 功能关键区域结合的抗生素时。尽管 rRNA 的结构已被人为改变了几十年,以研究它们在肽键形成机制中的作用,但令人惊讶的是,rRNA 结构的有目的改变以实现含有非典型氨基酸的蛋白质和肽的精细构建仅在最近才发生。在这篇观点文章中,我们总结了 rRNA 修饰的历史,并展示了如何在对肽键形成至关重要的区域中有意修饰 23S rRNA,现在可以使 d-氨基酸、β-氨基酸、二肽和正常蛋白源 l-α-氨基酸的二肽肽模拟物直接在核糖体上掺入。虽然含有代谢重要功能基团(如碳水化合物和磷酸盐基团)的蛋白质通常是通过新生多肽的翻译后修饰来精细构建的,但也讨论了使用修饰的核糖体直接产生此类聚合物的方法。最后,我们描述了在体外和细菌细胞中对这些修饰蛋白的构建,并提出了如何在未来的研究中利用这些新型生物材料。

相似文献

1
Expanding the Scope of Protein Synthesis Using Modified Ribosomes.
J Am Chem Soc. 2019 Apr 24;141(16):6430-6447. doi: 10.1021/jacs.9b02109. Epub 2019 Apr 5.
2
Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes.
J Mol Biol. 2022 Apr 30;434(8):167211. doi: 10.1016/j.jmb.2021.167211. Epub 2021 Aug 20.
3
Construction of modified ribosomes for incorporation of D-amino acids into proteins.
Biochemistry. 2006 Dec 26;45(51):15541-51. doi: 10.1021/bi060986a.
4
β-Puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids.
Biochemistry. 2012 Jan 10;51(1):401-15. doi: 10.1021/bi2016124. Epub 2011 Dec 19.
5
Facilitated synthesis of proteins containing modified dipeptides.
Bioorg Med Chem. 2021 Jul 1;41:116210. doi: 10.1016/j.bmc.2021.116210. Epub 2021 May 11.
6
Enhanced D-amino acid incorporation into protein by modified ribosomes.
J Am Chem Soc. 2003 Jun 4;125(22):6616-7. doi: 10.1021/ja035141q.
8
Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center.
Bioorg Med Chem. 2013 Mar 1;21(5):1088-96. doi: 10.1016/j.bmc.2013.01.002. Epub 2013 Jan 9.
9
Characterization of a separate small domain derived from the 5' end of 23S rRNA of an alpha-proteobacterium.
Nucleic Acids Res. 1999 Nov 1;27(21):4241-50. doi: 10.1093/nar/27.21.4241.
10
Systematic deletion of rRNAs for investigating ribosome architecture and function.
Nucleic Acids Symp Ser (Oxf). 2006(50):287-8. doi: 10.1093/nass/nrl143.

引用本文的文献

1
Biological Regulation Studied and with Modified Proteins.
Acc Chem Res. 2025 Apr 1;58(7):1109-1119. doi: 10.1021/acs.accounts.5c00023. Epub 2025 Mar 12.
2
Monosodium glutamate: A hidden risk factor for obesity?
Obes Rev. 2025 Jun;26(6):e13903. doi: 10.1111/obr.13903. Epub 2025 Feb 6.
3
Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Dihydrofolate Reductase.
J Am Chem Soc. 2023 Nov 1;145(43):23600-23608. doi: 10.1021/jacs.3c07524. Epub 2023 Oct 23.
4
Deciphering protein post-translational modifications using chemical biology tools.
Nat Rev Chem. 2020 Dec;4(12):674-695. doi: 10.1038/s41570-020-00223-8. Epub 2020 Oct 6.
5
Local Conformational Constraint of Firefly Luciferase Can Affect the Energy of Bioluminescence and Enzyme Stability.
CCS Chem. 2022 May;4(5):1695-1707. doi: 10.31635/ccschem.022.202101733. Epub 2022 Mar 18.
6
Computationally-guided design and selection of high performing ribosomal active site mutants.
Nucleic Acids Res. 2022 Dec 9;50(22):13143-13154. doi: 10.1093/nar/gkac1036.
8
Three-dimensional structure-guided evolution of a ribosome with tethered subunits.
Nat Chem Biol. 2022 Sep;18(9):990-998. doi: 10.1038/s41589-022-01064-w. Epub 2022 Jul 14.

本文引用的文献

1
In Cellulo Synthesis of Proteins Containing a Fluorescent Oxazole Amino Acid.
J Am Chem Soc. 2019 Apr 10;141(14):5597-5601. doi: 10.1021/jacs.8b12767. Epub 2019 Mar 26.
2
Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site.
Nucleic Acids Res. 2019 Feb 28;47(4):2089-2100. doi: 10.1093/nar/gky1211.
3
d-Amino Acid-Mediated Translation Arrest Is Modulated by the Identity of the Incoming Aminoacyl-tRNA.
Biochemistry. 2018 Jul 24;57(29):4241-4246. doi: 10.1021/acs.biochem.8b00595. Epub 2018 Jul 12.
4
Post-Translational Backbone Engineering through Selenomethionine-Mediated Incorporation of Freidinger Lactams.
Angew Chem Int Ed Engl. 2018 Jul 9;57(28):8697-8701. doi: 10.1002/anie.201804885. Epub 2018 Jun 11.
5
Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
Acc Chem Res. 2017 Nov 21;50(11):2767-2775. doi: 10.1021/acs.accounts.7b00376. Epub 2017 Oct 6.
7
Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria.
Nat Chem Biol. 2017 Aug;13(8):845-849. doi: 10.1038/nchembio.2405. Epub 2017 Jun 12.
8
Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.
J Am Chem Soc. 2017 Apr 5;139(13):4611-4614. doi: 10.1021/jacs.6b11825. Epub 2017 Mar 17.
9
30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology.
Cell. 2017 Jan 12;168(1-2):37-57. doi: 10.1016/j.cell.2016.12.012.
10
Consecutive Elongation of D-Amino Acids in Translation.
Cell Chem Biol. 2017 Jan 19;24(1):46-54. doi: 10.1016/j.chembiol.2016.11.012. Epub 2016 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验