Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.
J Am Chem Soc. 2019 Apr 24;141(16):6430-6447. doi: 10.1021/jacs.9b02109. Epub 2019 Apr 5.
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
核糖体产生细胞中存在的所有蛋白质和许多肽。作为一个由 RNA 和蛋白质组成的大分子复合物,它利用组成 RNA 快速且高度保真地催化肽键的形成。因此,可以说核糖体代表了 RNA 世界与目前以蛋白质催化剂为主导的生物系统之间的关键联系,在 RNA 世界中,RNA 是主要的催化剂。尽管 rRNA 在进化历史中具有众所周知的系统发育保守性,但当置于适当的压力下时,rRNA 很容易发生改变,例如存在与 rRNA 功能关键区域结合的抗生素时。尽管 rRNA 的结构已被人为改变了几十年,以研究它们在肽键形成机制中的作用,但令人惊讶的是,rRNA 结构的有目的改变以实现含有非典型氨基酸的蛋白质和肽的精细构建仅在最近才发生。在这篇观点文章中,我们总结了 rRNA 修饰的历史,并展示了如何在对肽键形成至关重要的区域中有意修饰 23S rRNA,现在可以使 d-氨基酸、β-氨基酸、二肽和正常蛋白源 l-α-氨基酸的二肽肽模拟物直接在核糖体上掺入。虽然含有代谢重要功能基团(如碳水化合物和磷酸盐基团)的蛋白质通常是通过新生多肽的翻译后修饰来精细构建的,但也讨论了使用修饰的核糖体直接产生此类聚合物的方法。最后,我们描述了在体外和细菌细胞中对这些修饰蛋白的构建,并提出了如何在未来的研究中利用这些新型生物材料。