Madrid J A Jiménez, Mancho A M
Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Madrid, Spain.
Chaos. 2009 Mar;19(1):013111. doi: 10.1063/1.3056050.
We introduce a new definition of distinguished trajectory that generalizes the concepts of fixed point and periodic orbit to aperiodic dynamical systems. This new definition is valid for identifying distinguished trajectories with hyperbolic and nonhyperbolic types of stability. The definition is implemented numerically and the procedure consists of determining a path of limit coordinates. It has been successfully applied to known examples of distinguished trajectories. In the context of highly aperiodic realistic flows our definition characterizes distinguished trajectories in finite time intervals, and states that outside these intervals trajectories are no longer distinguished.
我们引入了一种新的显著轨迹定义,该定义将不动点和周期轨道的概念推广到非周期动力系统。这个新定义对于识别具有双曲型和非双曲型稳定性的显著轨迹是有效的。该定义通过数值方法实现,其过程包括确定极限坐标的路径。它已成功应用于已知的显著轨迹示例。在高度非周期的实际流的背景下,我们的定义在有限时间间隔内表征显著轨迹,并指出在这些间隔之外轨迹不再显著。